SDN-OpenFlow Topology Discovery: An Overview of Performance Issues
Abstract
:1. Introduction
- Explain in-depth how OFDP works, the factors that affect its performance, and OFDP limitations.
- A survey of the recent existing techniques found in the literature in response to enhance the performance of OFDP. The pros and cons of each technique also are highlighted.
- OFDP’s open challenges and future research solutions.
2. Topology Discovery in SDN Networks
2.1. SDN-Switch Discovery
2.2. Host Discovery
2.3. Link Discovery
2.4. Link Discovery Protocol
2.5. Control Channel
2.6. Performance of the Link Discovery (OFDP)
2.6.1. OFDP in Huge and Dynamic Environments
2.6.2. OFDP Performance Metrics
- 1.
- The number of packets sent and received by the SDN-Controller
- 2.
- Average CPU Utilization of SDN-Controller
- 3.
- Accumulative CPU Utilization of SDN-Switches
- 4.
- Bandwidth Consumed by OFDP
- 5.
- Learning Time
2.7. Challenges of the Link Discovery
- 1.
- Overhead to SDN-Controller and Control Channel
- 2.
- Inefficient Link Failure Detection
- 3.
- Security Issues
3. Recent SDN Topology Discovery Performance Studies
3.1. Link Discovery Improvement Algorithms
3.1.1. Periodic
3.1.2. Event
3.2. Flow Table Management Algorithms
3.3. Control Channel Improvement Algorithms
4. Discussion and Open Issues
4.1. Location of the Topology Discovery Logic
4.2. How Much Do Methods Differ from OFDP
4.3. Operation Methods
4.4. CPU Usage
4.5. Learning Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feamster, N.; Rexford, J.; Zegura, E. The road to SDN: An intellectual history of programmable networks. Comput. Commun. Rev. 2014, 44, 87–98. [Google Scholar] [CrossRef]
- Kreutz, D.; Ramos, F.M.V.; Verissimo, P. Towards secure and dependable software-defined networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Chicago, IL, USA, 22 August 2014; pp. 55–60. [Google Scholar] [CrossRef]
- Dargahi, T.; Caponi, A.; Ambrosin, M.; Bianchi, G.; Conti, M. A Survey on the Security of Stateful SDN Data Planes. IEEE Commun. Surv. Tutor. 2017, 19, 1701–1725. [Google Scholar] [CrossRef]
- Kirkpatrick, K. Software-defined networking. Commun. ACM 2013, 56, 16–19. [Google Scholar] [CrossRef]
- Sezer, S.; Scott-Hayward, S.; Chouhan, P.K.; Fraser, B.; Lake, D.; Finnegan, J.; Viljoen, N.; Miller, M.; Rao, N. Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 2013, 51, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Levin, D.; Wundsam, A.; Heller, B.; Handigol, N.; Feldmann, A. Logically centralized? In Proceedings of the First Workshop on Hot Topics in Software Defined Networks—HotSDN ’12, Helsinki, Finland, 13 August 2012; ACM Press: New York, NY, USA, 2012; p. 1. [Google Scholar] [CrossRef]
- ONF SDN Architecture ONF. Available online: https://www.opennetworking.org/sdn-definition (accessed on 8 June 2021).
- Hakiri, A.; Gokhale, A.; Berthou, P.; Schmidt, D.C.; Gayraud, T. Software-Defined Networking: Challenges and research opportunities for Future Internet. Comput. Netw. 2014, 75, 453–471. [Google Scholar] [CrossRef]
- Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119. [Google Scholar] [CrossRef]
- Shirali-Shahreza, S.; Ganjali, Y. Efficient Implementation of Security Applications in OpenFlow Controller with FleXam. In Proceedings of the 2013 IEEE 21st Annual Symposium on High-Performance Interconnects, San Jose, CA, USA, 21–23 August 2013; pp. 49–54. [Google Scholar] [CrossRef]
- Van Adrichem, N.L.M.; Doerr, C.; Kuipers, F.A. OpenNetMon: Network monitoring in OpenFlow Software-Defined Networks. In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Lim, S.; Ha, J.; Kim, H.; Kim, Y.; Yang, S. A SDN-oriented DDoS blocking scheme for botnet-based attacks. In Proceedings of the 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), Shanghai, China, 8–11 July 2014; pp. 63–68. [Google Scholar] [CrossRef]
- Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun. Surv. Tutor. 2015, 17, 27–51. [Google Scholar] [CrossRef]
- Jarraya, Y.; Madi, T.; Debbabi, M. A Survey and a Layered Taxonomy of Software-Defined Networking. IEEE Commun. Surv. Tutor. 2014, 16, 1955–1980. [Google Scholar] [CrossRef]
- Kreutz, D.; Ramos, F.M.V.; Esteves Verissimo, P.; Esteve Rothenberg, C.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [Google Scholar] [CrossRef] [Green Version]
- Jammal, M.; Singh, T.; Shami, A.; Asal, R.; Li, Y. Software defined networking: State of the art and research challenges. Comput. Netw. 2014, 72, 74–98. [Google Scholar] [CrossRef] [Green Version]
- Braun, W.; Menth, M. Software-Defined Networking Using OpenFlow: Protocols, Applications and Architectural Design Choices. Futur. Internet 2014, 6, 302–336. [Google Scholar] [CrossRef]
- Jain, R.; Paul, S. Network virtualization and software defined networking for cloud computing: A survey. IEEE Commun. Mag. 2013, 51, 24–31. [Google Scholar] [CrossRef]
- OpenDaylight. Available online: https://www.opendaylight.org/ (accessed on 8 June 2021).
- Project Floodlight. Available online: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343517/Supported+Topologies (accessed on 8 June 2021).
- Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. NOX. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 105–110. [Google Scholar] [CrossRef]
- Ryu Controller. Available online: https://github.com/OpenState-SDN/ryu (accessed on 8 June 2021).
- Wang, X.; Gao, N.; Zhang, L.; Liu, Z.; Wang, L. Novel MITM Attacks on Security Protocols in SDN: A Feasibility Study. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, Vancouver, BC, Canada, 4–6 October 2010; USENIX Association: Vancouver, BC, Canada, 2016; pp. 455–465. [Google Scholar] [CrossRef]
- Erickson, D. The beacon openflow controller. In HotSDN ‘13. Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 16 August 2013; ACM Press: New York, NY, USA, 2013; p. 13. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Gopal, R.; Halpern, J. Forwarding and Control. Element Separation (ForCES) Protocol Specification. RFC 2010, 53, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Song, H. Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forwarding plane. In HotSDN ‘13. Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 16 August 2013; ACM Press: New York, NY, USA; pp. 127–132. [CrossRef]
- Bianchi, G.; Bonola, M.; Capone, A.; Cascone, C. OpenState. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 44–51. [Google Scholar] [CrossRef]
- ONF. OpenFlow Switch Specification version 1.3.0; ONF: Menlo Park, CA, USA, 2012. [Google Scholar]
- Nisar, K.; Jimson, E.R.; Hijazi, M.H.A.; Welch, I.; Hassan, R.; Aman, A.H.M.; Sodhro, A.H.; Pirbhulal, S.; Khan, S. A survey on the architecture, application, and security of software defined networking: Challenges and open issues. Internet Things 2020, 12, 100289. [Google Scholar] [CrossRef]
- Nunes, B.A.A.; Mendonca, M.; Nguyen, X.-N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [Google Scholar] [CrossRef] [Green Version]
- Correa Chica, J.C.; Imbachi, J.C.; Botero Vega, J.F. Security in SDN: A comprehensive survey. J. Netw. Comput. Appl. 2020, 159, 102595. [Google Scholar] [CrossRef]
- Wang, X.; Gao, N.; Zhang, L.; Liu, Z.; Wang, L. Novel MITM Attacks on Security Protocols in SDN: A Feasibility Study. In Information and Communications Security, Proceedings of the 18th International Conference, ICICS 2016, Singapore, 29 November–2 December 2016; Lam, K.-Y., Chi, C.-H., Qing, S., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 455–465. ISBN 978-3-319-50011-9. [Google Scholar] [CrossRef]
- Khan, S.; Gani, A.; Abdul Wahab, A.W.; Guizani, M.; Khan, M.K. Topology Discovery in Software Defined Networks: Threats, Taxonomy, and State-of-the-Art. IEEE Commun. Surv. Tutor. 2017, 19, 303–324. [Google Scholar] [CrossRef]
- Hong, S.; Xu, L.; Wang, H.; Gu, G. Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures. In Proceedings of the 2015 Network and Distributed System Security Symposium, San Diego, CA, USA, 8–11 February 2015; Internet Society: Reston, VA, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, M.; Poddar, R.; Mahajan, K.; Mann, V. SPHINX: Detecting Security Attacks in Software-Defined Networks. In Proceedings of the 2015 Network and Distributed System Security Symposium, San Diego, CA, USA, 8–11 February 2015; Internet Society: Reston, VA, USA, 2015. [Google Scholar] [CrossRef]
- Breitbart, Y.; Garofalakis, M.; Martin, C.; Rastogi, R.; Seshadri, S.; Silberschatz, A. Topology discovery in heterogeneous IP networks. In Proceedings of the IEEE INFOCOM 2000 Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), TelAviv, Israel, 26–30 March 2000; Volume 1, pp. 265–274. [Google Scholar] [CrossRef]
- Pakzad, F.; Portmann, M.; Tan, W.L.; Indulska, J. Efficient topology discovery in software defined networks. In Proceedings of the 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS), Queensland, Australia, 15–17 December 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Azzouni, A.; Boutaba, R.; Trang, N.T.M.; Pujolle, G. sOFTDP: Secure and efficient OpenFlow topology discovery protocol. In Proceedings of the NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Pakzad, F.; Portmann, M.; Tan, W.L.; Indulska, J. Efficient topology discovery in OpenFlow-based Software Defined Networks. Comput. Commun. 2016, 77, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Yelmo, I.; Alvarez-Horcajo, J.; Carral, J.A.; Lopez-Pajares, D. eHDDP: Enhanced Hybrid Domain Discovery Protocol for network topologies with both wired/wireless and SDN/non-SDN devices. Comput. Netw. 2021, 191. [Google Scholar] [CrossRef]
- Montero, R.; Agraz, F.; Pages, A.; Perello, J.; Spadaro, S. Dynamic topology discovery in SDN-enabled Transparent Optical Networks. In Proceedings of the 2017 International Conference on Optical Network Design and Modeling, Budapest, Hungary, 15–18 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Nehra, A.; Tripathi, M.; Gaur, M.S.; Battula, R.B.; Lal, C. SLDP: A secure and lightweight link discovery protocol for software defined networking. Comput. Netw. 2019, 150, 102–116. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, L.; Wu, G. ESLD: An efficient and secure link discovery scheme for software-defined networking. Int. J. Commun. Syst. 2018, 31, e3552. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Z.-P.; Xu, H. LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks. J. Comput. Sci. Technol. 2018, 33, 277–285. [Google Scholar] [CrossRef]
- Rojas, E.; Alvarez-Horcajo, J.; Martinez-Yelmo, I.; Carral, J.A.; Arco, J.M. TEDP: An Enhanced Topology Discovery Service for Software-Defined Networking. IEEE Commun. Lett. 2018, 22, 1540–1543. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, Y.R.; Tsai, S.C.; Yang, M.C. Forwarding path discovery with software defined networking. In Proceedings of the 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea, 27–29 September 2017; pp. 299–302. [Google Scholar] [CrossRef]
- Dacier, M.C.; Konig, H.; Cwalinski, R.; Kargl, F.; Dietrich, S. Security Challenges and Opportunities of Software-Defined Networking. IEEE Secur. Priv. 2017, 15, 96–100. [Google Scholar] [CrossRef]
- Rawat, D.B.; Reddy, S.R. Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 325–346. [Google Scholar] [CrossRef]
- Scott-Hayward, S.; Natarajan, S.; Sezer, S. A Survey of Security in Software Defined Networks. IEEE Commun. Surv. Tutor. 2016, 18, 623–654. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Xu, L.; Hong, S.; Gu, G. Enhancing Network Security through Software Defined Networking (SDN). In Proceedings of the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HT, USA, 1–4 August 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Akhunzada, A.; Gani, A.; Anuar, N.B.; Abdelaziz, A.; Khan, M.K.; Hayat, A.; Khan, S.U. Secure and dependable software defined networks. J. Netw. Comput. Appl. 2016, 61, 199–221. [Google Scholar] [CrossRef]
- Li, W.; Meng, W.; Kwok, L.F. A survey on OpenFlow-based Software Defined Networks: Security challenges and countermeasures. J. Netw. Comput. Appl. 2016, 68, 126–139. [Google Scholar] [CrossRef]
- Nehra, A.; Tripathi, M.; Gaur, M.S. “Global view” in SDN. In Proceedings of the the 10th International Conference on Security of Information and Networks—SIN ’17, Jaipur, India, 13–15 October; ACM Press: New York, NY, USA, 2017; pp. 303–306. [Google Scholar] [CrossRef]
- Espinel Sarmiento, D.; Lebre, A.; Nussbaum, L.; Chari, A. Decentralized SDN Control Plane for a Distributed Cloud-Edge Infrastructure: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 256–281. [Google Scholar] [CrossRef]
- Hayes, M.; Ng, B.; Pekar, A.; Seah, W.K.G. Scalable Architecture for SDN Traffic Classification. IEEE Syst. J. 2018, 12, 3203–3214. [Google Scholar] [CrossRef]
- Alsaeedi, M.; Mohamad, M.M.; Al-Roubaiey, A.A. Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey. IEEE Access 2019, 7, 107346–107379. [Google Scholar] [CrossRef]
- Isyaku, B.; Mohd Zahid, M.S.; Bte Kamat, M.; Abu Bakar, K.; Ghaleb, F.A. Software Defined Networking Flow Table Management of OpenFlow Switches Performance and Security Challenges: A Survey. Futur. Internet 2020, 12, 147. [Google Scholar] [CrossRef]
- ONF. OpenFlow Switch. Specification 1.5.1; ONF: Menlo Park, CA, USA, 2015. [Google Scholar]
- Narisetty, R.; Dane, L.; Malishevskiy, A.; Gurkan, D.; Bailey, S.; Narayan, S.; Mysore, S. OpenFlow configuration protocol: Implementation for the of management plane. In Proceedings of the 2013 Second GENI Research and Educational Experiment Workshop, Salt Lake City, UT, USA, 20–22 March 2013; pp. 66–67. [Google Scholar] [CrossRef]
- Chan, K.Y.; Chen, C.H.; Chen, Y.H.; Tsai, Y.J.; Lee, S.S.W.; Wu, C.S. Fast Failure Recovery for In-Band Controlled Multi-Controller OpenFlow Networks. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 396–401. [Google Scholar] [CrossRef]
- Tr-510, O.N.F. The Benefits of Multiple Flow Tables and TTPs. Available online: https://www.opennetworking.org/wp-content/uploads/2014/10/TR_Multiple_Flow_Tables_%0Aand_TTPs.pdf (accessed on 2 April 2021).
- Fancy, C.; Pushpalatha, M. Performance evaluation of SDN controllers POX and floodlight in mininet emulation environment. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 695–699. [Google Scholar] [CrossRef]
- Cisco Cisco Open SDN Controller. Available online: https://www.cisco.com/c/en/us/products/wireless/wireless-lan-controller/index.html (accessed on 8 June 2021).
- Geni GENI Wiki. Available online: http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol (accessed on 6 June 2021).
- Mayoral, A.; Vilalta, R.; Muñoz, R.; Casellas, R.; Martínez, R. SDN orchestration architectures and their integration with Cloud Computing applications. Opt. Switch. Netw. 2017, 26, 2–13. [Google Scholar] [CrossRef]
- Ochoa-Aday, L.; Cervello-Pastor, C.; Fernandez-Fernandez, A. ETDP: Enhanced topology discovery protocol for software-defined networks. IEEE Access 2019, 7, 23471–23487. [Google Scholar] [CrossRef]
- Araniti, G.; Cosmas, J.; Iera, A.; Molinaro, A.; Morabito, R.; Orsino, A. OpenFlow over wireless networks: Performance analysis. IEEE Int. Symp. Broadband Multimed. Syst. Broadcast. BMSB 2014. [Google Scholar] [CrossRef]
- Aslan, M.; Matrawy, A. On the Impact of Network State Collection on the Performance of SDN Applications. IEEE Commun. Lett. 2016, 20, 5–8. [Google Scholar] [CrossRef]
- Kempf, J.; Bellagamba, E.; Kern, A.; Jocha, D.; Takacs, A.; Skoldstrom, P. Scalable fault management for OpenFlow. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 6606–6610. [Google Scholar] [CrossRef]
- Abdelhadi, A.; Boutaba, R.; Pujolle, G. Limitations of OpenFlow Topology Discovery Protocol. In Proceedings of the 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-hoc-Net 2017), Budva, Montenegro, 28–30 June 2017. [Google Scholar]
- Tbah, M.; Azzouni, A.; Nguyen, M.T.; Pujolle, G. Topology Discovery Performance Evaluation of OpenDaylight and ONOS Controllers. In Proceedings of the 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 19–21 February 2019; pp. 285–291. [Google Scholar] [CrossRef]
- Shirmarz, A.; Ghaffari, A. Performance issues and solutions in SDN-based data center: A survey. J. Supercomput. 2020, 76, 7545–7593. [Google Scholar] [CrossRef]
- Bholebawa, I.Z.; Dalal, U.D. Performance analysis of SDN/openflow controllers: POX versus floodlight. Wirel. Pers. Commun. 2018, 98, 1679–1699. [Google Scholar] [CrossRef]
- Mittal, S. Performance Evaluation of Openflow SDN Controllers. Adv. Intell. Syst. Comput. 2018, 736, 913–923. [Google Scholar] [CrossRef]
- Vaghani, R.; Lung, C.-H. A Comparison of Data Forwarding Schemes for Network Resiliency in Software Defined Networking. Procedia Comput. Sci. 2014, 34, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Tarnaras, G.; Haleplidis, E.; Denazis, S. SDN and ForCES based optimal network topology discovery. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 13–17 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Rajaratnam, A.; Kadikar, R.; Prince, S.; Valarmathi, M. Software defined networks: Comparative analysis of topologies with ONOS. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 22–24 March 2017; pp. 1377–1381. [Google Scholar] [CrossRef]
- Bah, M.T.; Del-Piccolo, V.; Bourguiba, M.; Haddadou, K. A centralized controller to improve fault tolerance in TRILL-based fabric networks. In Proceedings of the 2016 3rd Smart Cloud Networks & Systems (SCNS), Dubai, United Arab Emirates, 19–21 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Alharbi, T.; Portmann, M.; Pakzad, F. The (In)Security of Topology Discovery in Software Defined Networks. In Proceedings of the 2015 IEEE 40th Conference on Local Computer Networks, Clearwater Beach, FL, USA, 26–29 October 2015; pp. 502–505. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Myungsik, Y. Analysis of link discovery service attacks in SDN controller. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 259–261. [Google Scholar] [CrossRef]
- Smyth, D.; McSweeney, S.; O’Shea, D.; Cionca, V. Detecting Link Fabrication Attacks in Software-Defined Networks. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Jiménez, Y.; Cervelló-Pastor, C.; García, A. Dynamic resource discovery protocol for software defined networks. IEEE Commun. Lett. 2015, 19, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.S.; Kang, S.; Lee, Y. Design and evaluation of a PCEP-based topology discovery protocol for stateful PCE. Opt. Switch. Netw. 2017, 26, 39–47. [Google Scholar] [CrossRef]
- Montero, R.; Agraz, F.; Pagès, A.; Perelló, J.; Spadaro, S. SDN-based parallel link discovery in optical transport networks. Trans. Emerg. Telecommun. Technol. 2019, 30, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Horcajo, J.; Rojas, E.; Martinez-Yelmo, I.; Savi, M.; Lopez-Pajares, D. HDDP: Hybrid Domain Discovery Protocol for Heterogeneous Devices in SDN. IEEE Commun. Lett. 2020, 24, 1655–1659. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, Y.; Dobre, O.A.; Wang, H.; Shen, X. An efficient topology discovery protocol with node id assignment based on layered model for underwater acoustic networks. Sensors 2020, 20, 6601. [Google Scholar] [CrossRef]
- Tarnaras, G.; Athanasiou, F.; Denazis, S. Efficient topology discovery algorithm for software-defined networks. IET Netw. 2017, 6, 157–161. [Google Scholar] [CrossRef]
- Katz, D.; Ward, D. RFC 5880, Bidirectional Forwarding Detection (June 2010).
- Rifai, M.; Huin, N.; Caillouet, C.; Giroire, F.; Moulierac, J.; Lopez Pacheco, D.; Urvoy-Keller, G. Minnie: An SDN world with few compressed forwarding rules. Comput. Netw. 2017, 121, 185–207. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.; Samal, S.S.; Turuk, A.K.; Panda, A.; Venkatesh, V.C. Dynamic Hard Timeout based Flow Table Management in Openflow enabled SDN. In Proceedings of the 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking, Vellore, India, 30–31 March 2019. [Google Scholar] [CrossRef]
- Isyaku, B.; Kamat, M.B.; Abu Bakar, K.B.; Mohd Zahid, M.S.; Ghaleb, F.A. IHTA: Dynamic Idle-Hard Timeout Allocation Algorithm based OpenFlow Switch. In Proceedings of the 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics, Penang, Malaysia, 18–19 April 2020; pp. 170–175. [Google Scholar] [CrossRef]
- Xu, X.; Hu, L.; Lin, H.; Fan, Z. An adaptive flow table adjustment algorithm for SDN. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City, Zhangjiajie, China, 10–12 August 2019; pp. 1779–1784. [Google Scholar] [CrossRef]
- Kotani, D.; Okabe, Y. A Packet-In message filtering mechanism for protection of control plane in OpenFlow switches. IEICE Trans. Inf. Syst. 2016, E99D, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Favaro, A.; Ribeiro, E.P. Reducing SDN/openflow control plane overhead with blackhole mechanism. In Proceedings of the 2015 Global Information Infrastructure and Networking Symposium (GIIS), Tunis, Tunisia, 28–30 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Leng, B.; Huang, L.; Qiao, C.; Xu, H.; Wang, X. FTRS: A mechanism for reducing flow table entries in software defined networks. Comput. Netw. 2017, 122, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Huang, N.; Wang, D.; Li, X.; Jiang, Y.; Song, Z. HQTimer: A Hybrid Q-Learning-Based Timeout Mechanism in Software-Defined Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 156–166. [Google Scholar] [CrossRef]
- Yang, H.; Riley, G.F. Machine learning based flow entry eviction for OpenFlow switches. In Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018. [Google Scholar] [CrossRef]
- Alowa, A.; Fevens, T. A dynamic recovery module for in-band control channel failure in software defined networking. In Proceedings of the 2020 6th IEEE Conference on Network Softwarization, Ghent, Belgium, 29 June–3 July 2020; pp. 209–217. [Google Scholar] [CrossRef]
- Fan, W.; Yang, F. Centralized Trust-Based In-Band Control for SDN Control Channel. IEEE Access 2020, 8, 4289–4300. [Google Scholar] [CrossRef]
- Asadujjaman, A.S.M.; Rojas, E.; Alam, M.S.; Majumdar, S. Fast Control Channel Recovery for Resilient In-band OpenFlow Networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops, Montreal, QC, Canada, 25–29 June 2018; pp. 232–236. [Google Scholar] [CrossRef]
- Osman, M.; Nunez-Martinez, J.; Mangues-Bafalluy, J. Hybrid SDN: Evaluation of the impact of an unreliable control channel. In Proceedings of the 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Berlin, Germany, 6–8 November 2017; Volume 2017, pp. 242–246. [Google Scholar] [CrossRef]
- Hwang, R.-H.; Tang, Y.-C. Fast Failover Mechanism for SDN-Enabled Data Centers. In Proceedings of the 2016 International Computer Symposium (ICS), Chiayi, Taiwan, 15–17 December 2016; pp. 171–176. [Google Scholar] [CrossRef]
- Ko, K.; Son, D.; Hyun, J.; Li, J.; Han, Y.; Hong, J.W.-K. Dynamic failover for SDN-based virtual networks. In Proceedings of the 2017 IEEE Conference on Network Softwarization (NetSoft), Bologna, Italy, 3–7 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Ibrar, M.; Wang, L.; Muntean, G.; Akbar, A.; Shah, N.; Malik, K.R. PrePass-Flow: A Machine Learning based technique to minimize ACL policy violation due to links failure in hybrid SDN. Comput. Netw. 2021, 184, 107706. [Google Scholar] [CrossRef]
- Gao, P.; Xu, Y.; Chao, H.J. OVS-CAB: Efficient rule-caching for Open vSwitch hardware offloading. Comput. Netw. 2021, 188, 107844. [Google Scholar] [CrossRef]
Features | LLDP | OFDP |
---|---|---|
Type of Ethernet frame | LLDP’s EtherType = 0 × 88cc | OFDP’s EtherType = 0 × 88cc |
Destination address of the frame | bridge-filtered multicast MAC (01:80:C2:00:00:0E) | normal multicast MAC (01:23:00: 00:00:01) |
Mode of operation | Advertisement only | Advertisement only |
What will the SDN-Switches do with advertisements? | SDN-Switches will not forward LLDP advertisements | SDN-Switches will forward OFDP advertisements |
SDN-Switches’ neighbor table | SDN-Switches that support LLDP build a table for directly connected neighbors | OpenFlow SDN-Switch does not keep any information about its directly connected neighbors |
How is the topology obtained? | By crawling the neighborhood tables of SDN-Switches | By inferring the information from LLDP Packet-In messages |
Topology Number | Topology Type | Topology Parameters | Number of SDN-Switches | Number of SDN-Switches | Number of Packet_Out |
---|---|---|---|---|---|
Topology 1 | Tree | d = 4, f = 4 | 85 | 424 | 424 |
Topology 2 | Tree | d = 7, f = 2 | 127 | 380 | 380 |
Topology 3 | Linear | m = 100 | 100 | 298 | 298 |
Performance Metrics | Description | Outcome |
---|---|---|
Number of packets sent and received by the SDN-Controller |
| Considerable Reasonable |
Number of packets sent and received by each SDN-Switch |
| Reasonable |
Average CPU utilization of SDN-Controller |
| Considerable |
Accumulative CPU utilization of SDN-Switches |
| Reasonable |
Bandwidth consumed by OFDP for in-band control channels |
| Considerable |
Learning time |
| Considerable |
Proposal | Methodology | Location of Logic | Operation Mode | Advantage | Disadvantage |
---|---|---|---|---|---|
OFDPv2 | Merge Packet_In messages from each port to each SDN-Switch | Controller | Periodic | (1) Reducing CPU overhead. (2) Reducing the bandwidth overhead on the control channel. | It works periodically, and this may introduce unnecessary discovery traffic |
sOFTDP | Triggering topology discovery service by link failure events monitored by Bidirectional Forwarding Detection. | Switches | Event | (1) Reduce learning time. (2) Reduce adaptation time. (3) Reduce CPU overhead. | It restricts the controller’s ability to collect statistical data on discovery traffic |
ForCES | Delegating the logic of topology discovery to the SDN-Switches. | Switches | Event | (1) Reduce the learning time of link changes. | It is only applicable for ForCES as a southbound API. |
ESLD | Reducing messages between the SDN-Controller and SDN-Switches for topology by restricting the sending discovery packets to only SDN-Switch ports connected to switches and not to hosts. | Controller | Periodic | (1) Reducing CPU overhead. (2) Reducing the bandwidth overhead. | Port classification consumes more messages |
SLDP | A new packet format was used for topology discovery messages with a random source MAC address. | Controller | Periodic | (1) Reducing CPU overhead. (2) Reducing the bandwidth overhead. | Increases Flow_Mod messages to enable authorized packet forwarding |
TEDP-S | Reducing messages between the SDN-Controller and SDN-Switches by sending only one discovery packet to the root SDN-Switch. | Controller and Switches | Periodic | (1) Reducing CPU overhead. (2) Reducing the bandwidth overhead. | Increasing CPU overhead on the switches. |
TEDP-H | Offloading the process of discovering the topology from SDN-Controller to the root SDN-Switch. | Controller and Switches | Periodic | (1) Reducing CPU overhead. (2) Reducing the bandwidth overhead. | Increasing CPU overhead on the SDN-Switches. |
SDN-RDP | Sharing network state management between multiple SDN-Controllers. | Controller | Periodic | (1) Reducing the number of messages. (2) Reducing the computation time. | Manual configurations |
GTOP | Improve topology discovery process in PCE to be as OpenFlow | PCE and Switches | Periodic | (1) Reduce link failures (2) Reduce updating times | Legacy domain |
SONT | Test-signal mechanism to detect network links | Controller and Optical switches | Periodic | (1) Reduce updating times | Fault tolerance is not checked despite its importance in optical networks |
HDDP | A lightweight agent and network exploration model based on flooding | Controller and Switches | Periodic | (1) Support different type of networks | CPU Overhead Increasing packet messages |
eTDP | Distributed topology discovery process on layer 2 and uses shortest control paths | Switches | Periodic | (1) Reduce discovery time and cost | Back to traditional networks |
TDP | Rely on network partitioning and using a timer to send topology discovery packets | Wireless nodes | Periodic | (1) Reducing send packets (2) Reduce topology discovery energy | Suitable for tree network topology only |
Proposal | Methodology | Controller Placement Mode | Operation Mode | Goals |
---|---|---|---|---|
Rifai et al. [89] | Flow entry compression | Reactive | Traffic engineering | Maximize the utility of flow tables |
Panda et al. [90] | Dynamic hard timeout allocation | Reactive | LRU | Maintain unpredictable flow for a limited period |
Isyaku et al. [91] | Dynamic idle and hard timeout based on traffic pattern to reduce overhead | Reactive and Proactive | LRU | Improved the restricted flow table |
Xu et al. [92] | merging flow table and cost of the SDN-Controller | Reactive | Traffic engineering | Adjusts the idle timeout value based on the flow |
Kotani and Okabe [93] | packet filtering scheme | Proactive | Traffic engineering | Reducing multiple packet-in messages forwarded to the SDN-Controller |
Favaro and Ribeiro [94] | Blackhole mechanism | Reactive | Flow-table management | Maintain visibility for each new flow. |
Leng et al. [95] | Rule optimization and binary tree aggregation | Reactive | Flow-table management | Reduce the number of flow entries |
Li et al. [96] | Used Q-Learning rule for selecting effective timeout values | Proactive | Machine Learning | Adjusts the idle timeout value based on the flow |
Yang and Riley [97] | Classify flows into active and inactive to decide the right flow to remove intelligently | Proactive | Machine learning | Increase the flow table capacity |
Proposal | Methodology | Controller Placement Mode | Operation Mode | Logic Location |
---|---|---|---|---|
Asadujjaman et al. [100] | Combined between topology type and source-routed forwarding to support local failure recovery | In-band | Recovery | SDN-Switch |
Fan and Yang [99] | Centralized trust management system for in-band control channel | In-band | Protection and Recovery | SDN-Controller |
Osman et al. [101] | The hybrid controlling mode that dynamically changes between centralized and distributed | In-band and Out-band | Protection | SDN-Controller and SDN-Switches |
Alowa and Fevens [98] | Trusted control pathways for in-band control channel | In-band | Protection and Recovery | SDN-Switches |
Hwang and Tang [102] | weighted function (Complete Bipartite Graph) technique is used to select the alternative control channel path | In-band | Recovery and Protection | SDN-Switches |
Ko et al. [103] | Dijkstra algorithm is used to calculate the shortest control channel pathways | In-band | Protection and Recovery | SD-Swatches |
Chan et al. [60] | K-best is used to find control channel paths in between multiple controllers | In-band | Protection | SDN-Controller and SDN-Switches |
Ibrar et al. [104] | Logistic regression and support vector machine algorithms to predict the link status | In-band | Protection | SDN-Controller |
Yang and Riley [97] | Classify flows into active and inactive to decide the right flow to remove intelligently | Proactive | Machine learning | Increase the flow table capacity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wazirali, R.; Ahmad, R.; Alhiyari, S. SDN-OpenFlow Topology Discovery: An Overview of Performance Issues. Appl. Sci. 2021, 11, 6999. https://doi.org/10.3390/app11156999
Wazirali R, Ahmad R, Alhiyari S. SDN-OpenFlow Topology Discovery: An Overview of Performance Issues. Applied Sciences. 2021; 11(15):6999. https://doi.org/10.3390/app11156999
Chicago/Turabian StyleWazirali, Raniyah, Rami Ahmad, and Suheib Alhiyari. 2021. "SDN-OpenFlow Topology Discovery: An Overview of Performance Issues" Applied Sciences 11, no. 15: 6999. https://doi.org/10.3390/app11156999