An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Theoretical and Operational Framework
3.2. Case Study
4. Results
4.1. Qualitative Analysis
4.1.1. Political Aspect
4.1.2. Economic Aspect
4.1.3. Socio-Cultural Aspect
4.1.4. Technological-Technical Aspect
4.1.5. Legal Aspect
4.1.6. Environmental Aspect
4.2. Quantitative Analysis
5. Discussion
6. Conclusions
- Adaptive reuse is the only sustainable alternative for underutilized former industrial urban buildings.
- Current policies should be reviewed in order to develop attractive financial incentives to promote the adaptive reuse of industrial buildings, in order to generate economic growth and employment.
- In addition to developing the appropriate codes of practice and standards for adaptive reuse, new innovative and green technologies can and should be used.
- The adaptive reuse of neighboring industrial or unutilized buildings and consolidated projects that can better use the current public facilities should be supported in order to achieve holistic urban regeneration.
- Public interest, support, and participation are important to promote adaptive reuse and to reach a consensus within the community in order to optimize building use after transformation.
- For the adaptive reuse practices, sustainable development, further relaxation and flexibility of relevant building land use and zoning regulations should be considered.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Vardopoulos, I. Environmental impact assessment scoping report. Residential complex in rafina—Pikermi City, Greece. Sustain. Dev. Cult. Tradit. J. 2019, 1, 63–79. [Google Scholar] [CrossRef]
- Kyramargiou, Z.; Vardopoulos, I. Use and sustainability of the ships’ waste reception facilities. Evidence from the port of Corinth, Greece. J. Manag. Reg. Dev. 2019, 15, 93–106. [Google Scholar]
- Zorpas, A.A. (Ed.) Sustainability Behind Sustainability; Nova Science Publishers: Hauppauge, NY, USA, 2014. [Google Scholar]
- Vardopoulos, I.; Konstantopoulos, I.; Zorpas, A.; Bennici, S.; Inglezakis, V.; Voukkali, I. Sustainable metropolitan areas perspectives through assessment of the existing waste management strategies. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Voukkali, I.; Loizia, P.; Navarro Pedreño, J.; Zorpas, A.A. Urban strategies evaluation for waste management in coastal areas in the framework of area metabolism. Waste Manag. Res. J. A Sustain. Circ. Econ. 2021, 0734242X2097277. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Voukkali, I.; Navarro Pedreño, J. Tourist area metabolism and its potential to change through a proposed strategic plan in the framework of sustainable development. J. Clean. Prod. 2018, 172, 3609–3620. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Micheletti, S.; Bosone, M. A participatory approach for “Circular” adaptive reuse of cultural heritage. Building a heritage community in Salerno, Italy. Sustainability 2021, 13, 4812. [Google Scholar] [CrossRef]
- Williams, J. Circular cities: Challenges to implementing looping actions. Sustainability 2019, 11, 423. [Google Scholar] [CrossRef] [Green Version]
- Obersteg, A.; Arlati, A.; Acke, A.; Berruti, G.; Czapiewski, K.; Dąbrowski, M.; Heurkens, E.; Mezei, C.; Palestino, M.F.; Varjú, V.; et al. Urban regions shifting to circular economy: Understanding challenges for new ways of governance. Urban Plan. 2019, 4, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Bosone, M.; De Toro, P.; Fusco Girard, L.; Gravagnuolo, A.; Iodice, S. Indicators for ex-post evaluation of cultural heritage adaptive reuse impacts in the perspective of the circular economy. Sustainability 2021, 13, 4759. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Lasaridi, K.; Pociovalisteanu, D.M.; Loizia, P. Monitoring and evaluation of prevention activities regarding household organics waste from insular communities. J. Clean. Prod. 2018, 172, 3567–3577. [Google Scholar] [CrossRef]
- Loizia, P.; Neofytou, N.; Zorpas, A.A. The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion. Environ. Sci. Pollut. Res. 2019, 26, 14766–14773. [Google Scholar] [CrossRef]
- Antoniou, N.A.; Zorpas, A.A. Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy. Waste Manag. 2019, 95, 161–170. [Google Scholar] [CrossRef]
- Symeonides, D.; Loizia, P.; Zorpas, A.A. Tire waste management system in cyprus in the framework of circular economy strategy. Environ. Sci. Pollut. Res. 2019, 26, 35445–35460. [Google Scholar] [CrossRef]
- Agapios, A.; Andreas, V.; Marinos, S.; Katerina, M.; Antonis, Z.A. Waste aroma profile in the framework of food waste management through household composting. J. Clean. Prod. 2020, 257, 120340. [Google Scholar] [CrossRef]
- Sourkouni, G.; Kalogirou, C.; Moritz, P.; Gödde, A.; Pandis, P.K.; Höfft, O.; Vouyiouka, S.; Zorpas, A.A.; Argirusis, C. Study on the influence of advanced treatment processes on the surface properties of polylactic acid for a bio-based circular economy for plastics. Ultrason. Sonochem. 2021, 76, 105627. [Google Scholar] [CrossRef]
- Fusco Girard, L.; Vecco, M. The “Intrinsic Value” of cultural heritage as driver for circular human-centered adaptive reuse. Sustainability 2021, 13, 3231. [Google Scholar] [CrossRef]
- Loizia, P.; Voukkali, I.; Chatziparaskeva, G.; Navarro-Pedreño, J.; Zorpas, A.A. Measuring the level of environmental performance on coastal environment before and during the COVID-19 pandemic: A case study from Cyprus. Sustainability 2021, 13, 2485. [Google Scholar] [CrossRef]
- Eray, E.; Sanchez, B.; Haas, C. Usage of interface management system in adaptive reuse of buildings. Buildings 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Sartori, T.; Calmon, J.L. Analysis of the Impacts of retrofit actions on the life cycle energy consumption of typical neighbourhood dwellings. J. Build. Eng. 2019, 21, 158–172. [Google Scholar] [CrossRef]
- Campball, J. Is your building a candidate for adaptive reuse? J. Prop. Manag. 1996, 61, 26. [Google Scholar]
- Juan, Y.-K.; Cheng, Y.-C.; Perng, Y.-H.; Castro-Lacouture, D. Optimal decision model for sustainable hospital building renovation—A case study of a vacant school building converting into a community public hospital. Int. J. Environ. Res. Public Health 2016, 13, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil, A.; Hammouda, N.; El-Deeb, K. Implementing sustainability in retrofitting heritage buildings. Case study: Villa Antoniadis, Alexandria, Egypt. Heritage 2018, 1, 57–87. [Google Scholar] [CrossRef] [Green Version]
- Scuderi, G. Retrofit of residential buildings in Europe. Designs 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Tunbridge, J.E. The Churchill—Roosevelt bases of 1940: The question of heritage in their adaptive reuse. Int. J. Herit. Stud. 2004, 10, 229–251. [Google Scholar] [CrossRef]
- Remøy, H. Preserving cultural and heritage value. In Sustainable Building Adaptation: Innovations in Decision-Making; Blackwell: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Radosavljević, U.; Đorđević, A.; Lalović, K.; Živković, J.; Đukanović, Z. Nodes and networks: The generative role of cultural heritage for urban revival in Kikinda. Sustainability 2019, 11, 2509. [Google Scholar] [CrossRef] [Green Version]
- Salerno, E. Identifying value-increasing actions for cultural heritage assets through sensitivity analysis of multicriteria evaluation results. Sustainability 2020, 12, 9238. [Google Scholar] [CrossRef]
- Tan, Y.; Shuai, C.; Wang, T. Critical success factors (CSFs) for the adaptive reuse of industrial buildings in Hong Kong. Int. J. Environ. Res. Public Health 2018, 15, 1546. [Google Scholar] [CrossRef] [Green Version]
- Karytsas, S.; Vardopoulos, I.; Theodoropoulou, E. Factors affecting sustainable market acceptance of residential microgeneration technologies. A two time period comparative analysis. Energies 2019, 12, 3298. [Google Scholar] [CrossRef] [Green Version]
- Fadli, F.; AlSaeed, M. A holistic overview of Qatar’s (Built) cultural heritage; Towards an integrated sustainable conservation strategy. Sustainability 2019, 11, 2277. [Google Scholar] [CrossRef] [Green Version]
- Vardopoulos, I.; Theodoropoulou, E. Adaptive reuse: An essential circular economy concept. Urban. Inf. 2020, 289, 4–6. [Google Scholar]
- Tsilika, E. “Sun and Shadow”: Exploring Marcel Breuer’s basic design principle. Archit. Cult. 2021, 9, 332–360. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Theodoropoulou, E. Does the new ‘FIX’ Fit? Adaptive building reuse affecting local sustainable development: Preliminary results. In The IAFOR Conference on Heritage & the City (HCNY2018); IAFOR: New York, NY, USA, 2018; pp. 997–1114. [Google Scholar]
- Bluestone, D. Tobacco row: Heritage, environment, and adaptive reuse in Richmond, Virginia. Chang. Over Time 2012, 2, 132–154. [Google Scholar] [CrossRef]
- Boeri, A.; Gaspari, J.; Gianfrate, V.; Longo, D.; Pussetti, C. The adaptive reuse of historic city centres. Bologna and Lisbon: Solutions for urban regeneration. TECHNE J. Technol. Archit. Environ. 2016, 12, 230–237. [Google Scholar] [CrossRef]
- Elsorady, D.A. Assessment of the compatibility of new uses for heritage buildings: The example of alexandria national museum, Alexandria, Egypt. J. Cult. Herit. 2014, 15, 511–521. [Google Scholar] [CrossRef]
- Hauke, P.; Werner, K.U. The second hand library building: Sustainable thinking through recycling old buildings into new libraries. IFLA J. 2012, 38, 60–67. [Google Scholar] [CrossRef]
- Haymond, J. Adaptive reuse of old buildings for archives. Am. Arch. 1982, 45, 10–18. [Google Scholar] [CrossRef]
- Ijla, A.; Broström, T. The sustainable viability of adaptive reuse of historic buildings: The experiences of two world heritage old cities; Bethlehem in Palestine and Visby in Sweden. Int. Invent. J. Arts Soc. Sci. 2015, 2, 52–66. [Google Scholar]
- Lens, K.; Plevoets, B.; Van Cleempoel, K. Conservation of monasteries by adaptive reuse: The added value of typology and morphology. WIT Trans. Built Environ. 2013, 131, 111–121. [Google Scholar] [CrossRef]
- Olivadese, R.; Remøy, H.; Berizzi, C.; Hobma, F. Reuse into housing: Italian and Dutch regulatory effects. Prop. Manag. 2017, 35, 165–180. [Google Scholar] [CrossRef]
- Ryńska, E.D. Rehabilitation and adaptive reuse of historic buildings in Poland. WIT Trans. Ecol. Environ. 2008, 113, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, K.; Thomas, K. Benchmarking adaptive reuse: A case study of Georgia. Int. J. Environ. Technol. Manag. 2015, 6, 346–361. [Google Scholar] [CrossRef]
- Weiss, S. Specters of industry. J. Archit. Educ. 2009, 63, 135–140. [Google Scholar] [CrossRef]
- Serghides, D.K.; Dimitriou, S.D.; Michaelidou, M.; Christofi, M.; Katafygiotou, M. Achieving nearly zero energy multi-family houses in cyprus through energy refurbishments. Energy Environ. Eng. 2017, 5, 19–28. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Karytsas, S. An exploratory path analysis of climate change effects on tourism. Sustain. Dev. Cult. Tradit. J. 2019, 132–152. [Google Scholar] [CrossRef]
- Foster, G.; Saleh, R. The adaptive reuse of cultural heritage in European circular city plans: A systematic review. Sustainability 2021, 13, 2889. [Google Scholar] [CrossRef]
- Durukan, A.; Ertaş Beşir, Ş.; Koç Altuntaş, S.; Açıkel, M. Evaluation of sustainability principles in adaptable re-functioning: Traditional residences in demirel complex. Sustainability 2021, 13, 2514. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Stamopoulos, C.; Chatzithanasis, G.; Michalakelis, C.; Giannouli, P.; Pastrapa, E. Considering urban development paths and processes on account of adaptive reuse projects. Buildings 2020, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Yazdani Mehr, S.; Wilkinson, S. The importance of place and authenticity in adaptive reuse of heritage buildings. Int. J. Build. Pathol. Adapt. 2020, 38, 689–701. [Google Scholar] [CrossRef]
- Manola, M.; Trikalitis, C. Cultural journey to the ‘seventh-gate city’ focusing on the museum of Thebes. J. Tour. Res. 2021, 27. [Google Scholar]
- Shen, L.; Langston, C. Adaptive reuse potential: An examination of differences between urban and non-urban projects. Facilities 2010, 28, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Bullen, P.A.; Love, P.E.D. The rhetoric of adaptive reuse or reality of demolition: Views from the field. Cities 2010, 24, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Lewin, S.S.; Goodman, C. Transformative renewal and urban sustainability. J. Green Build. 2013, 8, 17–38. [Google Scholar] [CrossRef]
- Wilkinson, S.; Remøy, H.; Langston, C. Building obsolescence and reuse. In Sustainable Building Adaptation: Innovations in Decision-making; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2014; pp. 95–120. [Google Scholar] [CrossRef]
- Yung, E.H.K.; Chan, E.H.W. Implementation challenges to the adaptive reuse of heritage buildings: Towards the goals of sustainable, low carbon cities. Habitat Int. 2012, 36, 352–361. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, N. Conservation and adaptive-reuse of historical industrial building in China in the post-industrial era. Front. Archit. Civ. Eng. China 2007, 1, 474–480. [Google Scholar] [CrossRef]
- Bullen, P.A. Adaptive reuse and sustainability of commercial buildings. Facilities 2007, 25, 20–31. [Google Scholar] [CrossRef]
- Langston, C. The sustainability implications of building adaptive reuse. In Proceedings of the CRIOCM 2008 International Research Symposium on Advancement of Construction Management and Real Estate, Beijing, China, 31 October–3 November 2008; pp. 1–10. [Google Scholar]
- Bullen, P.A.; Love, P.E. Residential regeneration and adaptive reuse: Learning from the experiences of Los Angeles. Struct. Surv. 2009, 27, 351–360. [Google Scholar] [CrossRef]
- Bullen, P.A.; Love, P. A new future for the past: A model for adaptive reuse decision-making. Built Environ. Proj. Asset Manag. 2011, 1, 32–44. [Google Scholar] [CrossRef]
- Wilkinson, S.; Remøy, H.; Langston, C. Identifying adaptive reuse potential. In Sustainable Building Adaptation: Innovations in Decision-making; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2014; pp. 187–207. [Google Scholar] [CrossRef]
- Langston, C.; Yung, E.H.K.; Chan, E.H.W. The application of arp modelling to adaptive reuse projects in Hong Kong. Habitat Int. 2013, 40, 233–243. [Google Scholar] [CrossRef]
- Song, S.; Song, X.X.; Zhang, C.H. Modern atrium applied in the adaptive reuse of old building. Appl. Mech. Mater. 2012, 209–211, 49–59. [Google Scholar] [CrossRef]
- Ross, B.E.; Chen, D.A.; Conejos, S.; Khademi, A. Enabling adaptable buildings: Results of a preliminary expert survey. Procedia Eng. 2016, 145, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Yung, E.H.K.; Chan, E.H.W.; Xu, Y. Community-Initiated adaptive reuse of historic buildings and sustainable development in the inner city of Shanghai. J. Urban Plan. Dev. 2013, 140, 05014003. [Google Scholar] [CrossRef]
- Conejos, S.; Langston, C.; Smith, J. AdaptSTAR Model: A climate-friendly strategy to promote built environment sustainability. Habitat Int. 2013, 37, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Conejos, S.; Langston, C.; Smith, J. Designing for better building adaptability: A comparison of AdaptSTAR and ARP models. Habitat Int. 2014, 41, 85–91. [Google Scholar] [CrossRef]
- Remøy, H.; Van Der Voordt, T. Adaptive reuse of office buildings into housing: Opportunities and risks. Build. Res. Inf. 2014, 42, 381–390. [Google Scholar] [CrossRef]
- Chan, A.; Cheung, E.; Wong, I. Impacts of the revitalizing industrial buildings (RIB) scheme in Hong Kong. Sustain. Cities Soc. 2015, 19, 184–190. [Google Scholar] [CrossRef]
- Adiwibowo, R.S.; Widodo, P.; Santosa, I. Correlations between public appreciation of historical building and intention to visit heritage building reused as retail store. Procedia Soc. Behav. Sci. 2015, 184, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Misirlisoy, D.; Günçe, K. A critical look to the adaptive reuse of traditional urban houses in the walled city of Nicosia. J. Archit. Conserv. 2016, 22, 149–166. [Google Scholar] [CrossRef]
- Misirlisoy, D.; Günçe, K. Adaptive reuse strategies for heritage buildings: A holistic approach. Sustain. Cities Soc. 2016, 26, 91–98. [Google Scholar] [CrossRef]
- Tan, Y.; Shen, L.; Langston, C. A fuzzy approach for adaptive reuse selection of industrial buildings in Hong Kong. Int. J. Strateg. Prop. Manag. 2014, 18, 66–76. [Google Scholar] [CrossRef]
- Giuliani, F.; De Falco, A.; Landi, S.; Giorgio Bevilacqua, M.; Santini, L.; Pecori, S. Reusing grain silos from the 1930s in Italy. A multi-criteria decision analysis for the case of arezzo. J. Cult. Herit. 2018, 29, 145–159. [Google Scholar] [CrossRef]
- Chen, C.S.; Chiu, Y.H.; Tsai, L. Evaluating the adaptive reuse of historic buildings through multicriteria decision-making. Habitat Int. 2018, 81, 12–23. [Google Scholar] [CrossRef]
- Dell’Ovo, M.; Dell’Anna, F.; Simonelli, R.; Sdino, L. Enhancing the cultural heritage through adaptive reuse. A multicriteria approach to evaluate the castello visconteo in Cusago (Italy). Sustainability 2021, 13, 4440. [Google Scholar] [CrossRef]
- Eshrati, P.; Fadaei-Nezhad-Bahramjerdi, S.; Eftekhari-Mahabadi, S.; Azad, M. Evaluation of authenticity on the basis of the nara grid on adaptive reuse of manochehri historical house kashan, Iran. Archnet-IJAR Int. J. Archit. Res. 2017, 11, 214–231. [Google Scholar] [CrossRef]
- Samadzadehyazdi, S.; Ansari, M.; Mahdavinejad, M.; Bemaninan, M. Significance of authenticity: Learning from best practice of adaptive reuse in the industrial heritage of Iran. Int. J. Archit. Herit. 2020, 14, 329–344. [Google Scholar] [CrossRef]
- Pendlebury, J.; Wang, Y.W.; Law, A. Re-using ‘Uncomfortable Heritage’: The case of the 1933 building, Shanghai. Int. J. Herit. Stud. 2018, 24, 211–229. [Google Scholar] [CrossRef] [Green Version]
- Bottero, M.; D’Alpaos, C.; Oppio, A. Ranking of adaptive reuse strategies for abandoned industrial heritage in vulnerable contexts: A multiple criteria decision aiding approach. Sustainability 2019, 11, 785. [Google Scholar] [CrossRef] [Green Version]
- Günçe, K.; Misirlisoy, D. Assessment of adaptive reuse practices through user experiences: Traditional houses in Thewalled City of Nicosia. Sustainability 2019, 11, 540. [Google Scholar] [CrossRef] [Green Version]
- Sing, M.C.P.; Love, P.E.D.; Liu, H.J. Rehabilitation of existing building stock: A system dynamics model to support policy development. Cities 2019, 87, 142–152. [Google Scholar] [CrossRef]
- Farjami, E.; Türker, Ö.O. The extraction of prerequisite criteria for environmentally certified adaptive reuse of heritage buildings. Sustainability 2021, 13, 3536. [Google Scholar] [CrossRef]
- Della Spina, L. Cultural heritage: A hybrid framework for ranking adaptive reuse strategies. Buildings 2021, 11, 132. [Google Scholar] [CrossRef]
- Palma, V.; Accorsi, F.; Casasso, A.; Bianco, C.; Cutrì, S.; Robiglio, M.; Tosco, T. AdRem: An integrated approach for adaptive remediation. Sustainability 2020, 13, 28. [Google Scholar] [CrossRef]
- Milošević, D.M.; Milošević, M.R.; Simjanović, D.J. Implementation of adjusted fuzzy AHP method in the assessment for reuse of industrial buildings. Mathematics 2020, 8, 1697. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Kowalska-Koczwara, A.; Pachla, F.; Radziszewska-Zielina, E.; Szewczyk, B.; Śladowski, G.; Tatara, T. Fuzzy model for selecting a form of use alternative for a historic building to be subjected to adaptive reuse. Energies 2020, 13, 2809. [Google Scholar] [CrossRef]
- Vardopoulos, I. Critical sustainable development factors in the adaptive reuse of urban industrial buildings. A fuzzy dematel approach. Sustain. Cities Soc. 2019, 50, 101684. [Google Scholar] [CrossRef]
- Almeida, C.P.; Ramos, A.F.; Silva, J.M. Sustainability assessment of building rehabilitation actions in old urban centres. Sustain. Cities Soc. 2018, 36, 378–385. [Google Scholar] [CrossRef]
- Kurttila, M.; Pesonen, M.; Kangas, J.; Kajanus, M. Utilizing the analytic hierarchy process (AHP) in SWOT analysis—A hybrid method and its application to a forest-certification case. For. Policy Econ. 2002. [Google Scholar] [CrossRef]
- Srdjevic, Z.; Bajcetic, R.; Srdjevic, B. Identifying the criteria set for multicriteria decision making based on SWOT/PESTLE analysis: A case study of reconstructing a water intake structure. Water Resour. Manag. 2012. [Google Scholar] [CrossRef]
- Tsangas, M.; Jeguirim, M.; Limousy, L.; Zorpas, A.A. The application of analytical hierarchy process in combination with PESTEL-SWOT analysis to assess the hydrocarbons sector in Cyprus. Energies 2019, 12, 791. [Google Scholar] [CrossRef] [Green Version]
- Parpas, D.; Savvides, A. Sustainable-driven adaptive reuse: Evaluation of criteria in a multi-attribute framework. In WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK, 2018; Volume 217, pp. 29–37. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, N.; Trivedi, D.M. Pestle technique—A tool to identify external risks in construction projects. Int. Res. J. Eng. Technol. 2016, 3, 384–388. [Google Scholar]
- Song, J.; Sun, Y.; Jin, L. PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renew. Sustain. Energy Rev. 2017, 80, 276–289. [Google Scholar] [CrossRef]
- Ghazinoory, S.; Abdi, M.; Azadegan-Mehr, M. Swot methodology: A state-of-the-art review for the past, a framework for the future. J. Bus. Econ. Manag. 2011, 12, 24–48. [Google Scholar] [CrossRef] [Green Version]
- Amato, A.; Andreoli, M.; Rovai, M. Adaptive reuse of a historic building by introducing new functions: A scenario evaluation based on participatory MCA applied to a former carthusian monastery in Tuscany, Italy. Sustainability 2021, 13, 2335. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Zorpas, A.A.; Phinikettou, V.; Voukkali, I. Proposed rehabilitation method of uncontrolled landfills in insular communities through multi-criteria analysis decision tool. In Phytoremediation; Springer International Publishing: Cham, Switzerland, 2016; pp. 365–383. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Pociovălişteanu, D.M.; Georgiadou, L.; Voukkali, I. Environmental and technical evaluation of the use of alternative fuels through multi-criteria analysis model. Prog. Ind. Ecol. Int. J. 2016, 10, 3. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Falireas, S.; Konstantopoulos, I.; Kaliora, E.; Theodoropoulou, E. Sustainability assessment of the agri-environmental practices in Greece. Indicators’ comparative study. Int. J. Agric. Resour. Gov. Ecol. 2018, 14, 368. [Google Scholar] [CrossRef]
- Vehbi, B.O.; Günçe, K.; Iranmanesh, A. Multi-criteria assessment for defining compatible new use: Old administrative hospital, Kyrenia, Cyprus. Sustainability 2021, 13, 1922. [Google Scholar] [CrossRef]
- Vardopoulos, I. Multi-criteria analysis for energy independence from renewable energy sources case study Zakynthos Island, Greece. Int. J. Environ. Sci. Dev. 2017, 8, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Zorpas, A.A.; Saranti, A. Multi-criteria analysis of sustainable environmental clean technologies for the treatment of winery’s wastewater. Int. J. Glob. Environ. Issues 2016, 15, 151. [Google Scholar] [CrossRef] [Green Version]
- Goepel, K.D. Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises—A new AHP excel template with multiple inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process—ISAHP2013, Kuala Lumpur, Malaysia, 23–26 June 2013; pp. 1–10. [Google Scholar]
- Goepel, K.D. Implementation of an online software tool for the analytic hierarchy process (AHP-OS). Int. J. Anal. Hierarchy Process 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Goepel, K.D. Comparison of judgment scales of the analytical hierarchy process—A new approach. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 445–463. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J.A.; Lamata, M.T. Consistency in the analytic hierarchy process: A new approach. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Vardopoulos, I. Multi-criteria decision-making approach for the sustainable autonomous energy generation through renewable sources. Studying Zakynthos island in Greece. Environ. Manag. Sustain. Dev. 2018, 7, 52–84. [Google Scholar] [CrossRef] [Green Version]
- Vardopoulos, I. Instagram users survey research and data analysis anent adaptive reuse tourism potential. In Proceedings of the 4th International Conference TOURMAN, Online Event, 21–23 May 2021. [Google Scholar]
- Yin, R. Case Study Research: Design and Methods; SAGE: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Loizia, P.; Voukkali, I.; Zorpas, A.A.; Navarro Pedreño, J.; Chatziparaskeva, G.; Inglezakis, V.J.; Vardopoulos, I.; Doula, M. Measuring the level of environmental performance in insular areas, through key performed indicators, in the framework of waste strategy development. Sci. Total Environ. 2021, 753, 141974. [Google Scholar] [CrossRef]
- Vardopoulos, I. Enduring remnants from the urban industrial past [Review of the book ΦΙΞFIX 120+ years of architecture: Takis Zenetos—Margaritis Apostolidis, a turning point in the history of the FIX building, by D. Theodoropoulou]. Urban. Archit. Constr. 2021, 12, 1–2. [Google Scholar]
- Vardopoulos, I.; Theodoropoulou, E. Theoretical Considerations and pilot findings on the adaptive reuse potential for tourism and sustainable urban development. In Proceedings of the 3rd International Scientific Conference TOURMAN 2019, Thessaloniki, Greece, 24–27 October 2019. [Google Scholar]
- Theodoropoulou, D. ΦΙΞFIX 120+ Years of Architecture: Takis Zenetos—Margaritis Apostolidis, a Turning Point in the History of the FIX Building; Epikentro Publishers: Thessaloniki, Greece, 2020. [Google Scholar]
- Zorpas, A.A. Strategy development in the framework of waste management. Sci. Total Environ. 2020, 716, 137088. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M. Territorial disparities, natural resource distribution, and land degradation: A case study in Southern Europe. GeoJournal 2007, 70, 185–194. [Google Scholar] [CrossRef]
- Tavankar, F.; Nikooy, M.; Latterini, F.; Venanzi, R.; Bianchini, L.; Picchio, R. The effects of soil moisture on harvesting operations in populus spp. plantations: Specific focus on costs, energy balance and GHG emissions. Sustainability 2021, 13, 4863. [Google Scholar] [CrossRef]
- De Wolf, C.; Hoxha, E.; Fivet, C. Comparison of environmental assessment methods when reusing building components: A case study. Sustain. Cities Soc. 2020, 61, 102322. [Google Scholar] [CrossRef]
- Cecchini, M.; Piccioni, F.; Ferri, S.; Coltrinari, G.; Bianchini, L.; Colantoni, A. Preliminary investigation on systems for the preventive diagnosis of faults on agricultural operating machines. Sensors 2021, 21, 1547. [Google Scholar] [CrossRef]
- Gambella, F.; Bianchini, L.; Cecchini, M.; Egidi, G.; Ferrara, A.; Salvati, L.; Colantoni, A.; Morea, D. Moving toward the North? The spatial shift of olive groves in Italy. Agric. Econ. 2021, 67, 129–135. [Google Scholar] [CrossRef]
- Langston, C. Validation of the adaptive reuse potential (ARP) model using IconCUR. Facilities 2012, 30, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Newman, H.K. Historic preservation policy and regime politics in Atlanta. J. Urban Aff. 2001, 23, 71–86. [Google Scholar] [CrossRef]
- Palen, J.; London, B. Gentrification, Displacement, and Neighborhood Revitalization; SUNY Press: Albany, NY, USA, 1984. [Google Scholar]
- Fabi, V.; Vettori, M.P.; Faroldi, E. Adaptive reuse practices and sustainable urban development: Perspectives of innovation for european historic spa towns. Sustainability 2021, 13, 5531. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Konstantinou, Z. Study of the possible links between CO2 emissions and employment status. Sustain. Dev. Cult. Tradit. J. 2017, 1, 100–112. [Google Scholar] [CrossRef]
- Ridolfi, E.; Pujol, D.S.; Ippolito, A.; Sarantakou, E.; Salvati, L. An urban political ecology approach to local development in fast-growing, tourism-specialized coastal cities. Tourismos 2017, 12, 171–204. [Google Scholar]
- Henderson, J. Railways as heritage attractions: Singapore’s Tanjong Pagar station. J. Herit. Tour. 2011, 6, 73–79. [Google Scholar] [CrossRef]
- Colantoni, A.; Grigoriadis, E.; Sateriano, A.; Sarantakou, E.; Salvati, L. Back to Von Thunen: A Southern European perspective on mono-centric urban growth, economic structure and non-urban land decline. Int. Plan. Stud. 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Pickerill, T. Investment leverage for adaptive reuse of cultural heritage. Sustainability 2021, 13, 5052. [Google Scholar] [CrossRef]
- Gosling, J.; Sassi, P.; Naim, M.; Lark, R. Adaptable buildings: A systems approach. Sustain. Cities Soc. 2013, 7, 44–51. [Google Scholar] [CrossRef]
- Conejos, S. Optimisation of future building adaptive reuse design criteria for urban sustainability. J. Des. Res. 2013, 11, 225. [Google Scholar] [CrossRef]
- Bullen, P.A.; Love, P.E.D. Adaptive reuse of heritage buildings. Struct. Surv. 2011, 29, 411–421. [Google Scholar] [CrossRef]
- Pintossi, N.; Ikiz Kaya, D.; Pereira Roders, A. Identifying challenges and solutions in cultural heritage adaptive reuse through the historic urban landscape approach in Amsterdam. Sustainability 2021, 13, 5547. [Google Scholar] [CrossRef]
- Lazzeretti, L. The Resurge of the “Societal Function of Cultural Heritage”. An introduction. City Cult. Soc. 2012, 3, 229–233. [Google Scholar] [CrossRef]
- Goyvaerts, S.; Vande Keere, N. Liturgy and landscape—re-activating christian funeral rites through adaptive reuse of a rural church and its surroundings as a columbarium and urn cemetery. Religions 2020, 11, 407. [Google Scholar] [CrossRef]
- Mitoula, R.; Theodoropoulou, E.; Karali, B. Sustainable development in the city of volos through reuse of industrial buildings. Sustain. Dev. Cult. Tradit. J. 2013, 2, 154–167. [Google Scholar] [CrossRef]
- Tsilika, E. The castle, the story, the journey. OAR Oxf. Artist. Pract. Based Res. Platf. 2018, 3, 59–61. [Google Scholar]
- Guidetti, E.; Robiglio, M. The transformative potential of ruins: A tool for a nonlinear design perspective in adaptive reuse. Sustainability 2021, 13, 5660. [Google Scholar] [CrossRef]
- Saifi, Y.; Yüceer, H.; Hürol, Y. Revisiting the conditions of authenticity for built heritage in areas of conflict. Heritage 2021, 4, 45. [Google Scholar] [CrossRef]
- Torrieri, F.; Fumo, M.; Sarnataro, M.; Ausiello, G. An Integrated decision support system for the sustainable reuse of the former monastery of “Ritiro del Carmine” in Campania Region. Sustainability 2019, 11, 5244. [Google Scholar] [CrossRef] [Green Version]
- Savvides, A. Regenerating public space: Urban adaptive reuse. Archit. Res. 2015, 5, 107–112. [Google Scholar] [CrossRef]
- Savvides, A. Adaptive reuse and housing in the historic city. Int. J. Architecton. Spat. Environ. Des. 2013, 6, 95–103. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez-Lucas, I.; Jordán-Vidal, M.M.; Bech-Borras, J.; Zorpas, A.A. Urban areas, human health and technosols for the green deal. Environ. Geochem. Health 2021. [Google Scholar] [CrossRef]
- Lo Faro, A.; Miceli, A. Sustainable strategies for the adaptive reuse of religious heritage: A social opportunity. Buildings 2019, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, L.; Huang, J.; Law, A. Research frameworks, methodologies, and assessment methods concerning the adaptive reuse of architectural heritage: A review. Built Herit. 2021, 5, 6. [Google Scholar] [CrossRef]
- Villacampa, A.; Poli, M. Reuse of the industrial heritage of Milan: Cultural settlement in Bovisa. Int. J. Sustain. Dev. Plan. 2013, 8, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Barber, L.B. Capitalizing on culture in flagship heritage initiatives: Transforming Hong Kong’s police married quarters into “PMQ.”. City Cult. Soc. 2018. [Google Scholar] [CrossRef]
- Karytsas, S.; Vardopoulos, I.; Theodoropoulou, E. Factors affecting residents’ attitude toward sustainable tourism development. Tourismos 2019, 14, 1–40. [Google Scholar]
- Tsilika, E. Reinventing the department store in Rotterdam: Breuer’s Bijenkorf 1953–1957. In Investigating and Writing Architectural History: Subjects, Methodologies and Frontiers; Papers from the third EAHN International Meeting; Rosso, M., Ed.; Politecnico di Torino: Torino, Italy, 2014; pp. 799–807. [Google Scholar]
- Tsilika, E. The creation of civic identity in post-war corporate architecture: Marcel Breuer’s Bijenkorf in Rotterdam (1953–1957). In Shopping Towns Europe; Gossey, J., Avermaete, T., Eds.; Bloomsbury Academic: London, UK, 2017; pp. 183–195. [Google Scholar]
- Tsilika, E. The Relation of Surface and Depth and the Way of the Mask in 20th Century Architecture: The Marcel Breuer Case; National Technical University of Athens: Athens, Greece, 2008. [Google Scholar]
- Šekularac, N.; Debljović Ristić, N.; Mijović, D.; Cvetković, V.; Barišić, S.; Ivanović-Šekularac, J. The use of natural stone as an authentic building material for the restoration of historic buildings in order to test sustainable refurbishment: Case study. Sustainability 2019, 11, 4009. [Google Scholar] [CrossRef] [Green Version]
- Vardopoulos, I. Applied Urban Sustainability: Mixed Methods Research on Adaptive Reuse Practices: Studying the FIX Case; Harokopio University: Athens, Greece, 2021. [Google Scholar] [CrossRef]
- Orbasli, A. Re-Using Existing Buildings towards Sustainable Regeneration; Oxford Brookes University: Oxford, UK, 2009. [Google Scholar]
- Ikiz Kaya, D.; Pintossi, N.; Dane, G. An empirical analysis of driving factors and policy enablers of heritage adaptive reuse within the circular economy framework. Sustainability 2021, 13, 2479. [Google Scholar] [CrossRef]
- De Medici, S.; De Toro, P.; Nocca, F. Cultural heritage and sustainable development: Impact assessment of two adaptive reuse projects in Siracusa, Sicily. Sustainability 2019, 12, 311. [Google Scholar] [CrossRef] [Green Version]
- Šekularac, N.; Ivanović-Šekularac, J.; Petrovski, A.; Macut, N.; Radojević, M. Restoration of a historic building in order to improve energy efficiency and energy saving—Case study—The dining room within the Žiča Monastery Property. Sustainability 2020, 12, 6271. [Google Scholar] [CrossRef]
- Coleman, S.; Touchie, M.F.; Robinson, J.B.; Peters, T. Rethinking performance gaps: A regenerative sustainability approach to built environment performance assessment. Sustainability 2018, 10, 4829. [Google Scholar] [CrossRef] [Green Version]
- Conejos, S.; Yung, E.H.K.; Chan, E.H.W. Evaluation of urban sustainability and adaptive reuse of built heritage areas: A case study on conservation in Hong Kong’s CBD. J. Des. Res. 2014, 12, 260–279. [Google Scholar] [CrossRef]
- De Berardinis, P.; Rotilio, M.; Capannolo, L. Energy and sustainable strategies in the renovation of existing buildings: An Italian case study. Sustainability 2017, 9, 1472. [Google Scholar] [CrossRef] [Green Version]
- Piderit, M.B.; Agurto, S.; Marín-Restrepo, L. Reconciling energy and heritage: Retrofit of heritage buildings in contexts of energy vulnerability. Sustainability 2019, 11, 823. [Google Scholar] [CrossRef] [Green Version]
- Zorpas, A.A.; Lasaridi, K.; Abeliotis, K.; Voukkali, I.; Loizia, P.; Fitiri, L.; Chroni, C.; Bikaki, N. Waste prevention campaign regarding the waste framework directive. Fresenius Environ. Bull. 2014, 21, 2876–2883. [Google Scholar]
- Zorpas, A.A.; Lasaridi, K. Measuring waste prevention. Waste Manag. 2013, 33, 1047–1056. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Voukkali, I.; Loizia, P. The impact of tourist sector in the waste management plans. Desalin. Water Treat. 2015, 56, 1141–1149. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Voukkali, I.; Loizia, P. A prevention strategy plan concerning the waste framework directive in Cyprus. Fresenius Environ. Bull. 2017, 26, 1310–1317. [Google Scholar]
- Aksamija, A. Regenerative design of existing buildings for net-zero energy use. Procedia Eng. 2015. [Google Scholar] [CrossRef] [Green Version]
- Vardopoulos, I.; Bekiari, E. Aνακαίνιση Και Επανάχρηση Βιομηχανικού Κτιρίου Της ΒΕΣO Στη Πάτρα Σε Ξενώνα Aνηλίκων; Technological Educational Institute of Patras: Patras, Greece, 2011. [Google Scholar]
- Di Feliciantonio, C.; Salvati, L.; Sarantakou, E.; Rontos, K. Class diversification, economic growth and urban sprawl: Evidences from a pre-crisis European city. Qual. Quant. 2018, 52, 1501–1522. [Google Scholar] [CrossRef]
- Salvati, L.; Gargiulo Morelli, V. Unveiling urban sprawl in the mediterranean region: Towards a latent urban transformation? Int. J. Urban Reg. Res. 2014, 38, 1935–1953. [Google Scholar] [CrossRef]
- Rani, P. The impact of adaptive reusing heritage building as assessed by the indoor air quality case study: UNESCO World heritage site penang. Procedia Soc. Behav. Sci. 2015, 179, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Zorpas, A.A.; Skouroupatis, A. Indoor air quality evaluation of two museums in a subtropical climate conditions. Sustain. Cities Soc. 2016, 20, 52–60. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef] [Green Version]
- Mallawarachchi, H.; Hansamali, P.; Perera, K.K.; Karunasena, G. Risk responsive strategies for adaptive reuse of historic buildings: A case of Sri Lanka. In Proceedings of the ICEC-PAQS 2018 Conference, Sydney, Australia, 18–20 November 2018. [Google Scholar]
- Chelleri, L.; Schuetze, T.; Salvati, L. Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City. Habitat Int. 2015, 48, 122–130. [Google Scholar] [CrossRef]
- Cuadrado-Ciuraneta, S.; Durà-Guimerà, A.; Salvati, L. Not only tourism: Unravelling suburbanization, second-home expansion and “rural” sprawl in Catalonia, Spain. Urban Geogr. 2017, 38, 66–89. [Google Scholar] [CrossRef]
- Pili, S.; Grigoriadis, E.; Carlucci, M.; Clemente, M.; Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Indic. 2017, 76, 71–80. [Google Scholar] [CrossRef]
- Salvati, L. The dark side of the crisis: Disparities in per Capita Income (2000–2012) and the urban-rural gradient in Greece. Tijdschr. Voor Econ. En Soc. Geogr. 2016, 107, 628–641. [Google Scholar] [CrossRef]
- Carlucci, M.; Grigoriadis, E.; Rontos, K.; Salvati, L. Revisiting a hegemonic concept: Long-term ‘mediterranean urbanization’ in between city re-polarization and metropolitan decline. Appl. Spat. Anal. Policy 2017, 10, 347–362. [Google Scholar] [CrossRef]
- Zambon, I.; Serra, P.; Sauri, D.; Carlucci, M.; Salvati, L. Beyond the ‘Mediterranean City’: Socioeconomic disparities and urban sprawl in three southern european cities. Geogr. Ann. Ser. B Hum. Geogr. 2017, 99, 319–337. [Google Scholar] [CrossRef]
Keywords-Level A | Keywords-Level B |
---|---|
Assessment | |
Adaptive Reuse | Indicators |
Industrial Building Preservation | Decision-making |
Heritage Conservation | Sustainability |
Urban Regeneration | Planning |
Built Environment | Design |
Strategies | |
Management |
Phase A | NPC | |||
---|---|---|---|---|
Political | vs. | Economic | 1 | |
Political | vs. | SocioCultural | 2 | |
Political | vs. | TechnologicalTechnical | 3 | |
Political | vs. | Environmental | 4 | |
Political | vs. | Legal | 5 | |
Economic | vs. | SocioCultural | 6 | |
Economic | vs. | TechnologicalTechnical | 7 | |
Economic | vs. | Environmental | 8 | |
Economic | vs. | Legal | 9 | |
SocioCultural | vs. | TechnologicalTechnical | 10 | |
SocioCultural | vs. | Environmental | 11 | |
SocioCultural | vs. | Legal | 12 | |
TechnologicalTechnical | vs. | Environmental | 13 | |
TechnologicalTechnical | vs. | Legal | 14 | |
Environmental | vs. | Legal | 15 | |
Phase B | ||||
Political | Blocking Neglect Policy | vs. | Political Support Level | 16 |
Blocking Neglect Policy | vs. | Urban Redevelopment Strategies-Incentives | 17 | |
Blocking Neglect Policy | vs. | Political Inertia | 18 | |
Political Support Level | vs. | Urban Redevelopment Strategies-Incentives | 19 | |
Political Support Level | vs. | Political Inertia | 20 | |
Urban Redevelopment Strategies-Incentives | vs. | Political Inertia | 21 | |
Economic | Economic Growth Boost | vs. | Inability to Estimate Economic Viability | 22 |
Economic Growth Boost | vs. | Capitalization of Cultural Value | 23 | |
Economic Growth Boost | vs. | Investment Returns | 24 | |
Inability to Estimate Economic Viability | vs. | Capitalization of Cultural Value | 25 | |
Inability to Estimate Economic Viability | vs. | Investment Returns | 26 | |
Capitalization of Cultural Value | vs. | Investment Returns | 27 | |
SocioCultural | Cultural Values Preservation | vs. | Facadism | 28 |
Cultural Values Preservation | vs. | Quality of Life Improvement | 29 | |
Cultural Values Preservation | vs. | Gentrification | 30 | |
Facadism | vs. | Quality of Life Improvement | 31 | |
Facadism | vs. | Gentrification | 32 | |
Quality of Life Improvement | vs. | Gentrification | 33 | |
TechnologicalTechnical | Technological Innovation | vs. | Asset Condition | 34 |
Technological Innovation | vs. | Scientific Fields Cooperation | 35 | |
Technological Innovation | vs. | Technical Difficulties | 36 | |
Asset Condition | vs. | Scientific Fields Cooperation | 37 | |
Asset Condition | vs. | Technical Difficulties | 38 | |
Scientific Fields Cooperation | vs. | Technical Difficulties | 39 | |
Environmental | Reduced Environmental Footprint | vs. | Achieving Net-Zero Energy Goals | 40 |
Reduced Environmental Footprint | vs. | Eco-Building | 41 | |
Reduced Environmental Footprint | vs. | Indoor Environmental Quality | 42 | |
Achieving Net-Zero Energy Goals | vs. | Eco-Building | 43 | |
Achieving Net-Zero Energy Goals | vs. | Indoor Environmental Quality | 44 | |
Eco-Building | vs. | Indoor Environmental Quality | 45 | |
Legal | Legislative Context | vs. | Building Standards | 46 |
Legislative Context | vs. | Land Use Plan and Zoning | 47 | |
Legislative Context | vs. | Ownership Status | 48 | |
Building Standards | vs. | Land Use Plan and Zoning | 49 | |
Building Standards | vs. | Ownership Status | 50 | |
Land Use Plan and Zoning | vs. | Ownership Status | 51 |
1 | Equal importance |
3 | Moderate importance |
5 | Strong importance |
7 | Very strong importance |
9 | Extreme importance |
2 | Values in-between |
4 | |
6 | |
8 |
Experts | Age Distrb | Yrs Exp | Education | Job Title |
---|---|---|---|---|
Economy expert | 35–45 | >12 | Doctorate in Economics and Sustainable Development | Senior Researcher in Socioeconomics at the Hellenic Centre for Renewable Energy Sources |
Society expert | 35–45 | >10 | Doctorate in Sustainable Economics and Political Sciences | Political Scientist at the Hellenic Ministry of Interior Affairs |
Environmental Expert | 35–45 | >15 | Environmental Biologist Agronomist, MSc in Environmental Management | Environmental Scientist at the Department of Environmental Inspectorate of the Hellenic Ministry of Environment |
Sustainability Indicators | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|
Political | P1.Blocking Neglect Policy | P2.Political Support Level | P3.Urban Re-Development Strategies/Incentives | P4.Political Inertia |
Economic | E1.Economic Growth Boost | E2.Inability to Estimate economic Viability | E3.Capitalization of Cultural Value | E4.Investment Returns |
Socio-Cultural | SC1.Cultural Values Preservation | SC2.Facadism | SC3.Quality of Life Improvement | SC4.Gentrification |
Technological-Technical | TT1.Technological Innovation | TT2.Asset Condition | TT3.Cooperation in a wide range of scientific fields | TT4.Technical Difficulties |
Environmental | EN1.Reduced Environmental Footprint | EN2.Achieving Net-Zero Energy Goals | EN3.Eco-Building | EN4.Indoor Environmental Quality |
Legal | L1.Current Legislative Context | L2.Current Building Standards | L3.Land use plan and zoning | L4.Ownership Status |
Expert: | Economy | Society | Environment | |||
---|---|---|---|---|---|---|
Indicators | Priority (%) | Rank | Priority (%) | Rank | Priority (%) | Rank |
P1.Blocking Neglect Policy | 4.1 | 8 | 3.0 | 8 | 0.6 | 16 |
P2.Political Support Level | 6.8 | 3 | 9.8 | 4 | 1.4 | 13 |
P3.Urban Re-Development Strategies/Incentives | 6.8 | 3 | 28.1 | 1 | 2.7 | 11 |
P4.Political Inertia | 1.9 | 13 | 1.4 | 16 | 0.6 | 16 |
E1.Economic Growth Boost | 11.9 | 1 | 14.3 | 3 | 1.1 | 14 |
E2.Inability to Estimate Economic Viability | 2.9 | 11 | 6.0 | 6 | 0.6 | 16 |
E3.Capitalization of Cultural Value | 6.8 | 3 | 2.1 | 11 | 3.5 | 9 |
E4.Investment Returns | 2.9 | 11 | 0.9 | 13 | 3.5 | 9 |
SC1.Cultural Values Preservation | 1.5 | 15 | 10.9 | 2 | 6.4 | 6 |
SC2.Facadism | 1.5 | 15 | 3.9 | 7 | 1.1 | 4 |
SC3.Quality of Life Improvement | 1.5 | 15 | 2.5 | 9 | 9.3 | 2 |
SC4.Gentrification | 0.5 | 16 | 0.8 | 14 | 6.8 | 5 |
TT1.Technological Innovation | 5.5 | 4 | 6.7 | 5 | 2.8 | 10 |
TT2.Asset Condition | 2.5 | 12 | 2.3 | 10 | 1.0 | 15 |
TT3.Cooperation in a wide range of scientific fields | 5.5 | 4 | 0.9 | 13 | 5.5 | 7 |
TT4.Technical Difficulties | 4.3 | 7 | 0.4 | 17 | 0.6 | 16 |
EN1.Reduced Environmental Footprint | 3.7 | 10 | 1.9 | 12 | 4.2 | 8 |
EN2.Achieving Net-Zero Energy Goals | 2.9 | 11 | 0.9 | 13 | 7.9 | 4 |
EN3.Eco-Building | 5.0 | 6 | 0.4 | 17 | 27.7 | 1 |
EN4.Indoor Environmental Quality | 3.7 | 10 | 0.1 | 19 | 8.0 | 3 |
L1.Legislative Context | 4.0 | 9 | 1.6 | 12 | 0.3 | 17 |
L2.Building Standards | 7.1 | 2 | 0.7 | 15 | 0.7 | |
L3.Land Use Plan and Zoning | 5.1 | 5 | 0.3 | 18 | 2.4 | 12 |
L4.Ownership Status | 1.7 | 14 | 0.1 | 19 | 1.1 | 14 |
Indicators Rank | Geometric Mean (%) | +/− | Value (%) | |
---|---|---|---|---|
1 | P3.Urban Re-Development Strategies/Incentives | 12.9 | + | 12.9 |
2 | E1.Economic Growth Boost | 10.0 | + | 10.0 |
3 | TT1.Technological Innovation | 8.5 | + | 8.5 |
4 | SC1.Cultural Values Preservation | 6.8 | + | 6.8 |
5 | P2.Political Support Level | 6.3 | − | 6.3 |
6 | EN3.Eco-Building | 6.2 | + | 6.2 |
7 | E3.Capitalization of Cultural Value | 5.7 | + | 5.7 |
8 | SC3.Quality of Life Improvement | 5.0 | + | 5.0 |
9 | EN1.Reduced Environmental Footprint | 4.7 | + | 4.7 |
10 | TT3.Scientific Fields Cooperation | 4.6 | + | 4.6 |
11 | EN2.Achieving Net-Zero Energy Goals | 4.2 | − | 4.2 |
12 | E4. Investment Returns | 3.2 | − | 3.2 |
13 | E2.Inability to Estimate economic Viability | 2.8 | − | 2.8 |
14 | EN4. Indoor Environmental Quality | 2.5 | − | 2.5 |
15 | L3.Land Use Plan and Zoning | 2.5 | + | 2.5 |
16 | SC2.Facadism | 2.3 | − | 2.3 |
17 | TT2.Asset Condition | 2.1 | − | 2.1 |
18 | L2.Building Standards | 2.1 | − | 2.1 |
19 | L1.Legislative Context | 1.8 | + | 1.8 |
20 | P1.Blocking Neglect Policy | 1.7 | + | 1.7 |
21 | SC4.Gentrification | 1.7 | − | 1.7 |
22 | TT4.Technical Difficulties | 0.9 | − | 0.9 |
23 | P4.Political Inertia | 0.8 | − | 0.8 |
24 | L4.Ownership Status | 0.8 | − | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardopoulos, I.; Tsilika, E.; Sarantakou, E.; Zorpas, A.A.; Salvati, L.; Tsartas, P. An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects. Appl. Sci. 2021, 11, 7134. https://doi.org/10.3390/app11157134
Vardopoulos I, Tsilika E, Sarantakou E, Zorpas AA, Salvati L, Tsartas P. An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects. Applied Sciences. 2021; 11(15):7134. https://doi.org/10.3390/app11157134
Chicago/Turabian StyleVardopoulos, Ioannis, Evangelia Tsilika, Efthymia Sarantakou, Antonis A. Zorpas, Luca Salvati, and Paris Tsartas. 2021. "An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects" Applied Sciences 11, no. 15: 7134. https://doi.org/10.3390/app11157134
APA StyleVardopoulos, I., Tsilika, E., Sarantakou, E., Zorpas, A. A., Salvati, L., & Tsartas, P. (2021). An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects. Applied Sciences, 11(15), 7134. https://doi.org/10.3390/app11157134