Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Proposed Segmentation Algorithm
2.3. Experimental Design
2.3.1. The Protocol Provided to Experts
2.3.2. Experiment 1—Overall Performance Evaluation
2.3.3. Experiment 2—Intra-Rater Segmentation Consistency
2.3.4. Experiment 3—Inter-Rater Segmentation Consistency
2.3.5. Statistical Analysis
3. Results
3.1. Experiment 1: Overall Performance Evaluation
3.2. Experiment 2: Intra-Rater Segmentation Consistency
3.3. Experiment 3: Inter-Rater Segmentation Consistency
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pham, D.L.; Xu, C.; Prince, J.L. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2000, 2, 315–337. [Google Scholar] [CrossRef]
- Sharma, N.; Aggarwal, L.M. Automated medical image segmentation techniques. J. Med. Phys. 2010, 35, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef]
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, S.; Akbari, H.; Doshi, J.; Shukla, G.; Rozycki, M.; Bilello, M.; Lustig, R.; Davatzikos, C. Radiomsic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: Implications for personalized radiotherapy planning. J. Med. Imaging 2018, 5, 21219. [Google Scholar] [CrossRef]
- Sahiner, B.; Hadjiiski, L.; Chan, H.-P.; Shi, J.; Cascade, P.; Kazerooni, E.; Zhou, C. The effect of nodule segmentation on the accuracy of computerized lung nodule detection on CT scans: Comparison on a data set annotated by multiple radiologists—Art. no. 65140L. Proc. SPIE Int. Soc. Opt. Eng. 2007, 6514, 65140L. [Google Scholar] [CrossRef]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakas, S.; Zeng, K.; Sotiras, A.; Rathore, S.; Akbari, H.; Gaonkar, B.; Rozycki, M.; Pati, S.; Davatzikos, C. GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation. Brainlesion 2016, 9556, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Bakas, S.; Sotiras, A.; Akbari, H.; Rozycki, M.; Rathore, S.; Pati, S.; Davatzikos, C. Segmentation of Gliomas in Pre-operative and Post-operative Multimodal Magnetic Resonance Imaging Volumes Based on a Hybrid Generative-Discriminative Framework. Brainlesion 2016, 10154, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yushkevich, P.A.; Pashchinskiy, A.; Oguz, I.; Mohan, S.; Schmitt, J.E.; Stein, J.M.; Zukic, D.; Vicory, J.; McCormick, M.; Yushkevich, N.; et al. User-Guided Segmentation of Multi-modality Medical Imaging Datasets with ITK-SNAP. Neuroinformatics 2019, 17, 83–102. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- Sakinis, T.; Milletari, F.; Roth, H.; Korfiatis, P.; Kostandy, P.; Philbrick, K.; Akkus, Z.; Xu, Z.; Xu, D.; Erickson, B.J. Interactive segmentation of medical images through fully convolutional neural networks. arXiv 2019, arXiv:1903.08205. [Google Scholar]
- Wolf, I.; Vetter, M.; Wegner, I.; Böttger, T.; Nolden, M.; Schöbinger, M.; Hastenteufel, M.; Kunert, T.; Meinzer, H.-P. The medical imaging interaction toolkit. Med. Image Anal. 2005, 9, 594–604. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Gaonkar, B.; Macyszyn, L.; Bilello, M.; Sadaghiani, M.S.; Akbari, H.; Attiah, M.A.; Ali, Z.S.; Da, X.; Zhan, Y.; Rourke, D.O.; et al. Automated Tumor Volumetry Using Computer-Aided Image Segmentation. Acad. Radiol. 2015, 22, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Wee, L.; Rios-Velazquez, E.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Lambin, P. Data From NSCLC-Radiomics [Data set]. Cancer Imaging Arch. 2019. [Google Scholar] [CrossRef]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Takeshi Shinohara, R.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar]
- McCormick, M.; Liu, X.; Jomier, J.; Marion, C.; Ibanez, L. ITK: Enabling reproducible research and open science. Front. Neuroinform. 2014, 8, 13. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–125. [Google Scholar]
- Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Davatzikos, C.; Rathore, S.; Bakas, S.; Pati, S.; Bergman, M.; Kalarot, R.; Sridharan, P.; Gastounioti, A.; Jahani, N.; Cohen, E.; et al. Cancer imaging phenomics toolkit: Quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 2018, 5, 11018. [Google Scholar] [CrossRef]
- Stigler, S.M. Francis Galton’s Account of the Invention of Correlation. Stat. Sci. 1989, 4, 73–79. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. Author Correction: SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 352. [Google Scholar] [CrossRef] [Green Version]
Experiment 1 | Experiment 2 | Experiment 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Overlap with Ground Truth | Mean Active Drawing Time | Correlation Coefficient | Mean Intra-Rater Overlap | Mean Inter-Rater Overlap | |||||||||
Label | IML | Manual | p | IML | Manual | IML | Manual | IML | Manual | p | IML | Manual | p |
Spleen | |||||||||||||
- | 0.91 | 0.87 | <10−3 | 66 s | 100 s | 0.99 | 0.99 | 0.91 | 0.89 | 0.003 | 0.91 | 0.87 | 0.003 |
Breast | |||||||||||||
- | 0.84 | 0.82 | <10−3 | 19 s | 70 s | 0.98 | 0.95 | 0.88 | 0.9 | 0.37 | 0.86 | 0.81 | <10−3 |
Lung | |||||||||||||
- | 0.78 | 0.83 | <10−3 | 93 s | 125 s | 0.96 | 0.97 | 0.96 | 0.95 | 0.116 | 0.85 | 0.89 | <10−3 |
Brain | |||||||||||||
WT | 0.94 | 0.92 | 0.259 | 21 m | 60 m | 1 | 0.98 | 0.91 | 0.89 | 0.61 | 0.89 | 0.88 | 0.156 |
NE | 0.81 | 0.79 | 0.183 | 0.97 | 0.95 | 0.85 | 0.86 | 0.32 | 0.79 | 0.67 | <10−3 | ||
ET | 0.85 | 0.87 | 0.09 | 0.96 | 0.98 | 0.85 | 0.88 | 0.116 | 0.79 | 0.84 | 0.044 | ||
ED | 0.88 | 0.87 | 0.657 | 1 | 0.98 | 0.85 | 0.83 | 0.788 | 0.81 | 0.8 | 0.455 |
Rater 1 | Rater 2 | |||
---|---|---|---|---|
Label | IML | Manual | IML | Manual |
Spleen | ||||
- | 0.9405 | 0.3507 | 0.1454 | 0.433 |
Breast | ||||
- | 0.2425 | 0.5116 | 0.5921 | 0.1358 |
Lung | ||||
- | 0.0422 | <0.0001 | 0.1358 | <0.0001 |
Brain | ||||
WT | 0.156 | 0.0001 | 0.8813 | 0.0008 |
NE | 0.0522 | 0.0859 | 0.9405 | 0.0001 |
ET | 0.1913 | 0.3317 | 0.0522 | 0.0001 |
ED | 0.4781 | 0.0001 | 0.6274 | 0.0008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bounias, D.; Singh, A.; Bakas, S.; Pati, S.; Rathore, S.; Akbari, H.; Bilello, M.; Greenberger, B.A.; Lombardo, J.; Chitalia, R.D.; et al. Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs. Appl. Sci. 2021, 11, 7488. https://doi.org/10.3390/app11167488
Bounias D, Singh A, Bakas S, Pati S, Rathore S, Akbari H, Bilello M, Greenberger BA, Lombardo J, Chitalia RD, et al. Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs. Applied Sciences. 2021; 11(16):7488. https://doi.org/10.3390/app11167488
Chicago/Turabian StyleBounias, Dimitrios, Ashish Singh, Spyridon Bakas, Sarthak Pati, Saima Rathore, Hamed Akbari, Michel Bilello, Benjamin A. Greenberger, Joseph Lombardo, Rhea D. Chitalia, and et al. 2021. "Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs" Applied Sciences 11, no. 16: 7488. https://doi.org/10.3390/app11167488
APA StyleBounias, D., Singh, A., Bakas, S., Pati, S., Rathore, S., Akbari, H., Bilello, M., Greenberger, B. A., Lombardo, J., Chitalia, R. D., Jahani, N., Gastounioti, A., Hershman, M., Roshkovan, L., Katz, S. I., Yousefi, B., Lou, C., Simpson, A. L., Do, R. K. G., ... Davatzikos, C. (2021). Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs. Applied Sciences, 11(16), 7488. https://doi.org/10.3390/app11167488