A Novel Hybrid Learning System Using Modified Breaking Ties Algorithm and Multinomial Logistic Regression for Classification and Segmentation of Hyperspectral Images
Abstract
:1. Introduction
- First, the main feature is that spectral information lies in the third dimension against each pixel entry in a data cube, and it can be extracted for the exploitation of linear separability of the classes. Numerous methods have been developed for extraction, such as independent component analysis [16], linear spectral unmixing [17,18], and maximum noise fraction [19].
2. Materials and Methods
2.1. Datasets
2.2. Multinomial Logistic Regression (MLR)
2.3. Regression Estimator Using MAP
2.4. EMAPs with Spatial Information
2.5. Approach of Generalized Composite Kernels
2.6. Isotropic Multi-Level Logistic (MLL) Prior
2.7. Performance Measures
3. Results and Discussion
3.1. Experimental Setup
3.2. Comparison with Existing Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goetz, A.F.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectrometry for earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef]
- Yuen, P.W.T.; Richardson, M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Sci. J. 2010, 58, 241–253. [Google Scholar] [CrossRef]
- Roggo, Y.; Edmond, A.; Chalus, P.; Ulmschneider, M. Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal. Chim. Acta 2005, 535, 79–87. [Google Scholar] [CrossRef]
- Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review. Appl. Spectrosc. Rev. 2013, 48, 142–159. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Qiao, T.; Yang, Z.; Ren, J.; Yuen, P.; Zhao, H.; Sun, G.; Marshall, S.; Benediktsson, J.A. Joint bilateral filtering and spectral similarity-based sparse representation: A generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recognit. 2018, 77, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Thompson, D.R.; Boardman, J.W.; Eastwood, M.L.; Green, R.O. A large airborne survey of Earth’s visible-infrared spectral dimensionality. Opt. Express 2017, 25, 9186. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.; Manolakis, D. Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag. 2002, 19, 12–16. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Borges, J.S.; Bioucas-Dias, J.M.; Marcal, A.R. Bayesian hyperspectral image segmentation with discriminative class learning. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2151–2164. [Google Scholar] [CrossRef]
- Shah, S.T.H.; Javed, S.G.; Majid, A.; Shah, S.A.H.; Qureshi, S.A. Novel classification technique for hyperspectral imaging using multinomial logistic regression and morphological profiles with composite kernels. In Proceedings of the IEEE International Bhurban Conference on Applied Sciences and Technology, IBCAST 2019, Nathiagalli, Pakistan, 8–12 January 2019; pp. 419–424. [Google Scholar]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xu, L.; Siva, P.; Wong, A.; Clausi, D.A. Hyperspectral Image Classification With Limited Labeled Training Samples Using Enhanced Ensemble Learning and Conditional Random Fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2427–2438. [Google Scholar] [CrossRef]
- Bayliss, J.D.; Gualtieri, J.A.; Cromp, R.F. Analyzing hyperspectral data with independent component analysis. In Proceedings of the 26th AIPR Workshop: Exploiting New Image Sources and Sensors (SPIE), Washington, DC, USA, 15–17 October 1997; pp. 133–143. [Google Scholar]
- Bioucas-Dias, J. A Variable Splitting Augmented Lagrangian Approach to Linear Spectral Unmixing. In Proceedings of the IEEE First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009; pp. 18–21. [Google Scholar]
- ul Rehman, A.; Qureshi, S.A. A review of the medical hyperspectral imaging systems and unmixing algorithms’ in biological tissues. Photodiagnosis Photodyn. Ther. 2020, 33, 102165. [Google Scholar] [CrossRef] [PubMed]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Zhang, L.; Zhang, L.; Chen, T.; Wu, K. A Discriminative Manifold Learning Based Dimension Reduction Method for Hyperspectral Classification. Int. J. Fuzzy Syst. 2012, 14, 272–277. [Google Scholar]
- Kim, W.; Crawford, M.M. Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4110–4121. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2002; p. 626. [Google Scholar]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Rafique, M.; Tareen, A.D.K.; Mir, A.A.; Nadeem, M.S.A.; Asim, K.M.; Kearfott, K.J. Delegated Regressor, A Robust Approach for Automated Anomaly Detection in the Soil Radon Time Series Data. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mir, A.A.; Çelebi, F.V.; Rafique, M.; Faruque, M.; Khandaker, M.U.; Kearfott, K.J.; Ahmad, P. Anomaly Classification for Earthquake Prediction in Radon Time Series Data Using Stacking and Automatic Anomaly Indication Function. Pure Appl. Geophys. 2021, 178, 1593–1607. [Google Scholar] [CrossRef]
- Wang, Z.; Du, B.; Zhang, L.; Zhang, L.; Jia, X. A novel semisupervised active-learning algorithm for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3071–3083. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.T.H.; Qureshi, S.A.; Rehman, A.u.; Shah, S.A.H.; Hussain, J. Classification and Segmentation Models for Hyperspectral Imaging—An Overview. In Proceedings of the Intelligent Technologies and Applications: Third International Conference, INTAP 2020, Grimstad, Norway, 28–30 September 2020; pp. 3–16. [Google Scholar]
- Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 2012, 51, 844–856. [Google Scholar] [CrossRef]
- Li, H.; Xiao, G.; Xia, T.; Tang, Y.Y.; Li, L. Hyperspectral Image Classification Using Functional Data Analysis. IEEE Trans. Cybern. 2014, 44, 1544–1555. [Google Scholar] [PubMed]
- MacKay, D.J.C. Information-Based Objective Functions for Active Data Selection. Neural Comput. 1992, 4, 590–604. [Google Scholar] [CrossRef]
- Krishnapuram, B.; Carin, L.; Figueiredo, M.A.T.; Hartemink, A.J. Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Kramer, K.; Goldgof, D.B.; Hall, L.O.; Samson, S.; Remsen, A.; Hopkins, T. Active Learning to Recognize Multiple Types of Plankton. J. Mach. Learn. Res. 2005, 6, 589–613. [Google Scholar]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3947–3960. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Chi, M.; Marconcini, M. A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3363–3373. [Google Scholar] [CrossRef] [Green Version]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Chapelle, O.; Chi, M.; Zien, A. A continuation method for semi-supervised SVMs. In Proceedings of the 23rd International Conference on Machine Learning—ICML ‘06, New York, NY, USA, 25–29 June 2006; pp. 185–192. [Google Scholar]
- Böhning, D. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 1992, 44, 197–200. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Wu, C.; Luo, J.; Wu, Y.; Bai, L.; Wang, C.; Zang, S.; Wu, C.; et al. Mapping Soil Alkalinity and Salinity in Northern Songnen Plain, China with the HJ-1 Hyperspectral Imager Data and Partial Least Squares Regression. Sensors 2018, 18, 3855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Gao, H.; Miao, Y.; Cao, X.; Li, C. Densely Connected Multiscale Attention Network for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2563–2576. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, X.; Lu, X. A supervised segmentation network for hyperspectral image classification. IEEE Trans. Image Process. 2021, 30, 2810–2825. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Feng, W.; Quan, Y.; Dauphin, G.; Gao, L.; Xing, M. Enhanced-Random-Feature-Subspace-Based Ensemble CNN for the Imbalanced Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3988–3999. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Pereira, N.S.; Plaza, J.; Plaza, A. Ghostnet for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Extreme, S.; Cao, F.; Yang, Z.; Ren, J.; Ling, W.-K.; Zhao, H. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification. Remote. Sens. 2017, 9, 1225. [Google Scholar]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Du, B.; Huang, X.; Tang, Y.Y.; Tao, D. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images. IEEE Trans. Cybern. 2018, 48, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Zhang, L. An Adaptive Artificial Immune Network for Supervised Classification of Multi-/Hyperspectral Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 894–909. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.; Zhang, L. Missing information reconstruction of remote sensing data: A technical review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 61–85. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2010, 40, 1267–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhang, H.; Huang, Y.; Zhang, L. Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation with a Locally Adaptive Dictionary. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3707–3719. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral–Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7738–7749. [Google Scholar] [CrossRef]
- Zhao, J.; Zhong, Y.; Shu, H.; Zhang, L. High-resolution image classification integrating spectral-spatial-location cues by conditional random fields. IEEE Trans. Image Process. 2016, 25, 4033–4045. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, X.; Zhang, L.; Zhang, L.; Plaza, A.; Benediktsson, J.A. Support tensor machines for classification of hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3248–3264. [Google Scholar] [CrossRef]
- Jain, D.K.; Dubey, S.B.; Choubey, R.K.; Sinhal, A.; Arjaria, S.K.; Jain, A.; Wang, H. An approach for hyperspectral image classification by optimizing SVM using self organizing map. J. Comput. Sci. 2018, 25, 252–259. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological Attribute Profiles for the Analysis of Very High Resolution Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Zappone, A.; Di Renzo, M.; Debbah, M. Wireless networks design in the era of deep learning: Model-based, AI-based, or both? IEEE Trans. Commun. 2019, 67, 7331–7376. [Google Scholar] [CrossRef] [Green Version]
Class No. | Class Name | #Samples | Classification Accuracy over Different AL Methods | |||||
---|---|---|---|---|---|---|---|---|
Train | Test | Random Selection | Maximum Entropy | Mutual Information | Breaking Ties | Modified Breaking Ties | ||
1 | Alfalfa | 5 | 50 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | Corn-no till | 5 | 1429 | 99.90 | 100.00 | 100.00 | 100.00 | 100.00 |
3 | Corn-min till | 5 | 829 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
4 | Corn | 5 | 229 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
5 | Grass-pasture | 5 | 492 | 93.54 | 90.38 | 82.06 | 90.37 | 97.87 |
6 | Grass-tree | 5 | 742 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
7 | Grass-pasture-mowed | 5 | 21 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
8 | Hay-windrowed | 5 | 484 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
9 | Oats | 5 | 15 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
10 | Soyabeans-no till | 5 | 961 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
11 | Soyabeans-min till | 5 | 2463 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | Soyabeans-clean till | 5 | 609 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
13 | Wheat | 5 | 207 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
14 | Woods | 5 | 1289 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
15 | Building-grass-trees-drives | 5 | 375 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
16 | Stone-steel towers | 5 | 90 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Overall Accuracy | 99.92 | 99.39 | 98.13 | 99.27 | 99.93 | |||
Average Accuracy | 99.59 | 99.39 | 98.87 | 99.39 | 99.86 | |||
Kappa Statistics | 98.99 | 99.77 | 97.38 | 98.96 | 99.84 |
Class No. | Class Name | Segmentation Accuracy over Different AL Methods | ||||
---|---|---|---|---|---|---|
Random Selection | Maximum Entropy | Mutual Information | Breaking Ties | Modified Breaking Ties | ||
1 | Alfalfa | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | Corn-no till | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
3 | Corn-min till | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
4 | Corn | 99.84 | 100.00 | 99.56 | 100.00 | 100.00 |
5 | Grass-pasture | 94.16 | 92.50 | 84.50 | 93.46 | 99.63 |
6 | Grass-tree | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
7 | Grass-pasture-mowed | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
8 | Hay-windrowed | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
9 | Oats | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
10 | Soyabeans-no till | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
11 | Soyabeans-min till | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | Soyabeans-clean till | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
13 | Wheat | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
14 | Woods | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
15 | Building-grass-trees-drives | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
16 | Stone-steel towers | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Overall Accuracy | 99.44 | 99.23 | 98.50 | 99.59 | 99.98 | |
Average Accuracy | 99.62 | 99.51 | 99.00 | 99.59 | 99.98 | |
Kappa Statistics | 99.21 | 98.93 | 97.19 | 99.43 | 99.98 |
Sr. No. | References | Classification Accuracy | Segmentation Accuracy | ||||
---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | ||
1 | Li et al. [28] | 19.08 | 11.64 | 6.66 | 14.37 | 17.73 | 12.34 |
2 | Li et al. [30] | 38.32 | 48.30 | 40.04 | 42.05 | 62.41 | 39.04 |
3 | Li et al. [31] | 55.55 | 64.32 | 50.04 | 62.49 | 70.92 | 57.75 |
4 | Li et al. [32] | 48.32 | 64.38 | 44.19 | 82.84 | 88.32 | 78.19 |
5 | Proposed (HLS) | 99.93 | 99.86 | 99.84 | 99.98 | 99.98 | 99.98 |
Class No. | Class Name | # Samples | Classification Accuracy over Different AL Methods | |||||
---|---|---|---|---|---|---|---|---|
Train | Test | Random Selection | Maximum Entropy | Mutual Information | Breaking Ties | Modified Breaking Ties | ||
1 | Asphalt | 5 | 7174 | 98.28 | 97.81 | 96.52 | 99.13 | 99.01 |
2 | Bare Soil | 5 | 19,184 | 99.88 | 99.99 | 100 | 99.98 | 99.98 |
3 | Bitumen | 5 | 2486 | 96.68 | 95.63 | 93.04 | 98.27 | 98.05 |
4 | Bricks | 5 | 3583 | 99.96 | 99.99 | 100.00 | 100.00 | 100.00 |
5 | Gravel | 5 | 1605 | 99.99 | 100.00 | 100.00 | 100.00 | 99.99 |
6 | Meadows | 5 | 5556 | 83.60 | 88.87 | 96.05 | 89.92 | 90.03 |
7 | Metal Sheets | 5 | 1700 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
8 | Shadows | 5 | 4191 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
9 | Trees | 5 | 1173 | 99.98 | 99.98 | 99.65 | 99.48 | 99.99 |
Overall Accuracy | 99.09 | 99.33 | 99.25 | 99.37 | 99.14 | |||
Average Accuracy | 97.59 | 98.03 | 98.36 | 98.53 | 98.56 | |||
Kappa Statistics | 98.23 | 98.72 | 98.93 | 99.09 | 99.01 |
Class No. | Class Name | Segmentation Accuracy over Different AL Methods | ||||
---|---|---|---|---|---|---|
Random Selection | Maximum Entropy | Mutual Information | Breaking Ties | Modified Breaking Ties | ||
1 | Asphalt | 98.97 | 98.95 | 98.48 | 99.75 | 99.64 |
2 | Bare Soil | 99.75 | 99.92 | 99.88 | 99.87 | 99.85 |
3 | Bitumen | 98.19 | 97.98 | 97.09 | 99.62 | 99.44 |
4 | Bricks | 99.99 | 100.00 | 100.00 | 100.00 | 100.00 |
5 | Gravel | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
6 | Meadows | 86.74 | 92.95 | 97.26 | 94.72 | 94.90 |
7 | Metal sheets | 100.00 | 99.99 | 99.99 | 99.99 | 99.84 |
8 | Shadows | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
9 | Trees | 100.00 | 100.00 | 100.00 | 100.00 | 99.99 |
Overall Accuracy | 99.34 | 99.59 | 99.55 | 99.69 | 99.42 | |
Average Accuracy | 98.18 | 98.87 | 99.19 | 99.33 | 99.29 | |
Kappa Statistics | 98.45 | 99.21 | 99.32 | 99.48 | 99.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.T.H.; Qureshi, S.A.; Rehman, A.u.; Shah, S.A.H.; Amjad, A.; Mir, A.A.; Alqahtani, A.; Bradley, D.A.; Khandaker, M.U.; Faruque, M.R.I.; et al. A Novel Hybrid Learning System Using Modified Breaking Ties Algorithm and Multinomial Logistic Regression for Classification and Segmentation of Hyperspectral Images. Appl. Sci. 2021, 11, 7614. https://doi.org/10.3390/app11167614
Shah STH, Qureshi SA, Rehman Au, Shah SAH, Amjad A, Mir AA, Alqahtani A, Bradley DA, Khandaker MU, Faruque MRI, et al. A Novel Hybrid Learning System Using Modified Breaking Ties Algorithm and Multinomial Logistic Regression for Classification and Segmentation of Hyperspectral Images. Applied Sciences. 2021; 11(16):7614. https://doi.org/10.3390/app11167614
Chicago/Turabian StyleShah, Syed Taimoor Hussain, Shahzad Ahmad Qureshi, Aziz ul Rehman, Syed Adil Hussain Shah, Arslan Amjad, Adil Aslam Mir, Amal Alqahtani, David A. Bradley, Mayeen Uddin Khandaker, Mohammad Rashed Iqbal Faruque, and et al. 2021. "A Novel Hybrid Learning System Using Modified Breaking Ties Algorithm and Multinomial Logistic Regression for Classification and Segmentation of Hyperspectral Images" Applied Sciences 11, no. 16: 7614. https://doi.org/10.3390/app11167614
APA StyleShah, S. T. H., Qureshi, S. A., Rehman, A. u., Shah, S. A. H., Amjad, A., Mir, A. A., Alqahtani, A., Bradley, D. A., Khandaker, M. U., Faruque, M. R. I., & Rafique, M. (2021). A Novel Hybrid Learning System Using Modified Breaking Ties Algorithm and Multinomial Logistic Regression for Classification and Segmentation of Hyperspectral Images. Applied Sciences, 11(16), 7614. https://doi.org/10.3390/app11167614