Pilot Studies of Vibrations Induced in Perambulators When Moving on Different Surfaces
Abstract
:1. Introduction
- Increasing the current knowledge of vibration characteristics of infants in baby carriages;
- Increasing the current knowledge of vibration effects (amplitude, frequency, exposure time) on infants’ health.
2. Materials and Methods
2.1. Subject
2.2. Test Equipment
2.3. Data Processing
3. Results and Discussion
3.1. Time Domain
3.2. Frequency Domain
3.3. Normative Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamio, C.; Aihara, T. Dynamic simulation of baby carriage under running condition: Analyzing vibration when passing over a level difference. Mech. Eng. Lett. 2020, 6, 19-00376. [Google Scholar] [CrossRef]
- Ryan, D.M. Characterization of Whole Body Vibration Exposures in Neonatal Ground Transport. Ph.D. Thesis, University of Washington, Washington, DC, USA, 2018. [Google Scholar]
- Okajima, H.; Ota, S.; Ota, R. Dynamic Characteristics of Infants Riding on Stroller. In Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition, Online, 16–19 November 2020. [Google Scholar]
- Lim, K.S. A Study of Infant Comfort Level in a Baby Stroller. Bachelor’s Thesis, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia, 2018. [Google Scholar]
- Dupuis, H.; Zerlett, G. The Effects of Whole-Body Vibration; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Griffin, M.J. Handbook of Human Vibration; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Giacomin, J.; Gallo, S. In-vehicle vibration study of child safety seats. Ergonomics 2003, 46, 1500–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, J.; Walding, D.; Klasen, J.; David, Y. Vibration issues of neonatal incubators during in-hospital transport. J. Clin. Eng. 2008, 33, 74–77. [Google Scholar] [CrossRef]
- Grosek, S.; Mlakar, G.; Vidmar, I.; Ihan, A.; Primozic, J. Heart rate and leukocytes after air and ground transportation in artificially ventilated neonates: A prospective observational study. Intensive Care Med. 2009, 35, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.; McKechnie, L. How comfortable is neonatal transport? Acta Paediatr. 2011, 101, 143–147. [Google Scholar] [CrossRef]
- Joyce, T.; Huecker, M.R. Pediatric Abusive Head Trauma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Goswami, I.; Redpath, S.; Langlois, R.G.; Green, J.R.; Lee, K.S.; Whyte, H.E. A Whole-body vibration in neonatal transport: A review of current knowledge and future research challenges. Early Hum. Dev. 2020, 146, 105051. [Google Scholar] [CrossRef]
- Rahmatalla, S.; Kinsler, R.; Qiao, G.; DeShaw, J.; Mayer, A. Effect of gender, stature, and body mass on immobilized supine human response during en route care transport. J. Low Freq. Noise Vibr. Active Control 2021, 40, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Rahmatalla, S.; DeShaw, J.; Barazanji, K. Biodynamics of supine humans and interaction with transport systems during vibration and shocks. J. Low Freq. Noise Vibr. Active Control 2019, 38, 808–816. [Google Scholar] [CrossRef]
- DeShaw, J.; Rahmatalla, S. Predictive discomfort of supine humans in whole-body vibration and shock environments. Ergonomics 2016, 59, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.J. Discomfort from feeling vehicle vibration. In Vehicle System Dynamics; Human Factors Research Unit, Institute of Sound and Vibration Research, University of Southampton: Southampton, UK, 2007. [Google Scholar]
- Griffin, M.J.; Lewis, C.H. A comparison of evaluations and assessment obtained using alternative standards for predicting the hazards of whole-body vibrations and repeated shocks. J. Sound Vib. 1998, 215, 915–926. [Google Scholar] [CrossRef]
- International Organization for Standardization. Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements, ISO 2631-1:1985; ISO: Geneva, Switzerland, 1985. [Google Scholar]
- International Organization for Standardization. Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements, ISO 2631-1:1997; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- BSI Group. Guide to Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration and Repeated Shock, BS 6841:1987; BSI: London, UK, 1987. [Google Scholar]
- Hełbin, J. Wybrane problemy higieny i ekologii człowieka. In Środowiskowe Czynniki Fizyczne Wpływające na Organizm Człowieka; Kolarzyk, E., Ed.; Wydawnictwo Uniwersytetu Jagiellońskiego: Kraków, Poland, 2008. [Google Scholar]
- Drgania Mechaniczne. Pomiar i Wyznaczanie Ekspozycji Człowieka na Drgania Przenoszone Przez Kończyny Górne. Część 1: Wymagania ogólne, PN-EN ISO 5349-1:2004; 2004; Available online: https://sklep.pkn.pl/pn-en-iso-5349-1-2004p.html (accessed on 21 August 2021).
- Drgania Mechaniczne—Pomiar i Wyznaczanie Ekspozycji Człowieka na Drgania Przenoszone Przez Kończyny Górne—Część 2: Praktyczne Wytyczne do Wykonywania Pomiarów na Stanowisku Pracy, PN-EN ISO 5349-2:2004; 2004; Available online: https://sklep.pkn.pl/pn-en-iso-5349-2-2004p.html (accessed on 21 August 2021).
- Drgania Mechaniczne—Pomiar i Obliczanie Zawodowej Ekspozycji na Drgania o Ogólnym Działaniu na Organizm Człowieka dla Potrzeb Ochrony Zdrowia—Wytyczne Praktyczne, PN-EN 14253+A1:2011; 2011; Available online: https://sklep.pkn.pl/pn-en-14253-a1-2011p.html (accessed on 21 August 2021).
- Kowalski, P. Pomiar i ocena drgań mechanicznych w środowisku pracy według nowych przepisów prawnych. Bezpieczeństwo Pr. Nauka Prakt. 2006, 9, 24–26. [Google Scholar]
- Lyons, R.G. Understanding Digital Signal Processing, 3rd ed.; Pearson Education: New York, NY, USA, 2011. [Google Scholar]
- Giacomin, J. Some observations regarding the vibrational environment in child safety seats. Appl. Ergon. 2000, 31, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Sehat, A.R.; Nirmal, U.; Jin, Z. State of the art baby strollers: Design review and the innovations of an ergonomic baby stroller. Cogent Eng. 2017, 4, 1333273. [Google Scholar] [CrossRef]
- Koh, B.X.; Nirmal, U.; Yuhazri, M.Y. Developments on Baby Strollers over the Last Decade. Curr. J. Appl. Sci. Technol. 2019, 33, 1–25. [Google Scholar] [CrossRef]
- Artykuły dla Dzieci—Wózki Dziecięce—Część 1: Wózki Spacerowe i Wózki Głębokie, PN-EN 1888-1:2019-02; 2019; Available online: https://sklep.pkn.pl/catalogsearch/result/?q=1888 (accessed on 21 August 2021).
- Murtagh, E.M.; Mair, J.L.; Aguiar, E.; Tudor-Locke, C.; Murphy, M.H. Outdoor Walking Speeds of Apparently Healthy Adults: A Systematic Review and Meta-analysis. Sports Med. 2020, 51, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Więckowski, D. An attempt to estimate natural frequencies of parts of the child’s body. Arch. Automot. Eng. 2012, 55, 61–74. [Google Scholar]
- Jurczak, M.E. Wpływ Wibracji na Ustrój Człowieka; Państwowy Zakład Wydawnictw Lekarskich: Warszawa, Poland, 1974. [Google Scholar]
Parameter | Modern Pram | Old Pram |
---|---|---|
Mass | 12.7 kg | 17.2 kg |
Front wheel diameter | 16.5 cm | 29.5 cm |
Rear wheel diameter | 25 cm | 29.5 cm |
Tyre type | Ethylene vinyl acetate (EVA) foam | Pneumatic; inflation pressure: 2 bar |
Front suspension | Longitudinal arm (≈2 cm stroke) | Suspension straps (Figure 1b) |
Rear suspension | No suspension (rigid) | Suspension straps (Figure 1b) |
Wheelbase | 61 cm | 54 cm |
Front wheel track | 34 cm | 57 cm |
Rear wheel track | 46 cm | 57 cm |
Height of the frame bottom | 11 cm | 12 cm |
Contact surface (mattress) height | 53 cm | 50 cm |
Modern Pram—Surface Variants | Old Pram—Surface Variants | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Asphalt Road | Concrete Paving Blocks | Concrete Plates | Dirt Road | Lawn | Damaged Concrete | Asphalt Road | Concrete Paving Blocks | Concrete Plates | Dirt Road | Lawn | Damaged Concrete | |
(RMS) | 1.82 | 2.63 | 4.06 | 3.97 | 4.36 | 4.74 | 0.45 | 0.92 | 2.04 | 2.20 | 3.37 | 3.24 |
(RMS) | 0.84 | 0.67 | 1.58 | 1.66 | 2.55 | 2.33 | 0.32 | 0.39 | 0.72 | 0.79 | 1.33 | 1.53 |
(RMS) | 0.70 | 1.12 | 2.26 | 1.71 | 1.64 | 1.48 | 0.32 | 0.42 | 0.92 | 0.80 | 1.58 | 1.30 |
(RMS) | 2.12 | 2.94 | 4.91 | 4.63 | 5.31 | 5.48 | 0.63 | 1.09 | 2.35 | 2.47 | 3.95 | 3.81 |
6.86 | 11.63 | 19.02 | 18.91 | 20.11 | 20.07 | 1.58 | 3.01 | 7.87 | 7.34 | 13.79 | 9.86 |
Symptoms from Organs and Other Parts of the Human Body Subject to Vibration | Frequency Ranges Considered to Be Disruptive [Hz] | Frequency Ranges Where Reactions Are Very Intense [Hz] |
---|---|---|
General wellbeing | 1 ÷ 20 | 4.5 ÷ 9 |
Dizziness | 9 ÷ 20 | 13 ÷ 20 |
Strong jaw vibrations | 6 ÷ 8 | - |
Apnoea | - | 1 ÷ 3 |
Breathing disorders | 4 ÷ 8 | - |
Stomach ache | 4 ÷ 14 | 4.5 ÷ 10 |
Strong increase of muscle tone | 10 ÷ 20 | 13 ÷ 20 |
Chest pain | 4 ÷ 11 | 5 ÷ 7 |
Lumbo-sacral pain | 6.5 ÷ 20 | 8 ÷ 12 |
Urinary urgency | 9 ÷ 20 | 10 ÷ 18 |
Faecal urgency | 9 ÷ 20 | 10.5 ÷ 16 |
Modern Pram—Surface Variants | Old Pram—Surface Variants | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Asphalt Road | Concrete Paving blocks | Concrete Plates | dirt Road | Lawn | Damaged Concrete | Asphalt Road | Concrete Paving blocks | Concrete Plates | dirt Road | Lawn | Damaged Concrete | |
(RMS) | 1.70 | 2.50 | 4.03 | 3.81 | 4.28 | 4.57 | 0.44 | 0.90 | 2.08 | 2.23 | 3.41 | 3.26 |
(RMS) | 0.36 | 0.22 | 0.81 | 0.72 | 1.08 | 1.09 | 0.23 | 0.20 | 0.51 | 0.53 | 0.85 | 0.97 |
(RMS) | 0.26 | 0.27 | 1.00 | 0.50 | 0.80 | 0.58 | 0.21 | 0.20 | 0.45 | 0.33 | 0.77 | 0.60 |
(RMS) | 1.76 | 2.53 | 4.23 | 3.91 | 4.49 | 4.74 | 0.54 | 0.94 | 2.19 | 2.31 | 3.60 | 3.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierzputowski, G.; Wróbel, R.; Mihaylov, V.; Janeczek, M.; Majewska-Pulsakowska, M.; Jarząb, S. Pilot Studies of Vibrations Induced in Perambulators When Moving on Different Surfaces. Appl. Sci. 2021, 11, 7746. https://doi.org/10.3390/app11167746
Sierzputowski G, Wróbel R, Mihaylov V, Janeczek M, Majewska-Pulsakowska M, Jarząb S. Pilot Studies of Vibrations Induced in Perambulators When Moving on Different Surfaces. Applied Sciences. 2021; 11(16):7746. https://doi.org/10.3390/app11167746
Chicago/Turabian StyleSierzputowski, Gustaw, Radosław Wróbel, Veselin Mihaylov, Maciej Janeczek, Marta Majewska-Pulsakowska, and Sławomir Jarząb. 2021. "Pilot Studies of Vibrations Induced in Perambulators When Moving on Different Surfaces" Applied Sciences 11, no. 16: 7746. https://doi.org/10.3390/app11167746
APA StyleSierzputowski, G., Wróbel, R., Mihaylov, V., Janeczek, M., Majewska-Pulsakowska, M., & Jarząb, S. (2021). Pilot Studies of Vibrations Induced in Perambulators When Moving on Different Surfaces. Applied Sciences, 11(16), 7746. https://doi.org/10.3390/app11167746