Correlation of Kinematics and Kinetics of Changing Sagittal Plane Body Position during Landing and the Risk of Non-Contact Anterior Cruciate Ligament Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocols
2.3. Parameters
2.3.1. Upright Landing (URL)
2.3.2. Lean Forward Landing (LFL)
2.3.3. Self-Selected Landing (SSL)
2.4. Data Processing
2.5. Statistical Methods
3. Results
3.1. Demographic Results
3.2. Torque Analyses
3.3. Joint Angle Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Loës, M.; Dahlstedt, L.J.; Thomée, R. A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand. J. Med. Sci. Sports 2000, 10, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Aaron, M.G.; Zbgniew, G.; Jacques, G.B. Effects of Oral Contraceptive Use on Anterior Cruciate Ligament Injury Epidemiology. Med. Sci. Sports Exerc. 2016, 48, 648–654. [Google Scholar]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Myklebust, G.; Engebretsen, L.; Braekken, I.H.; Skjolberg, A.; Olsen, O.E.; Bahr, R. Prevention of anterior cruciate ligament injuries in female team handball players: A prospective intervention study over three seasons. Clin. J. Sport Med. 2003, 13, 71–78. [Google Scholar] [CrossRef] [PubMed]
- The Female ACL: Why Is It More Prone to Injury? Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805849/pdf/main.pdf (accessed on 2 August 2021).
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Stevenson, H.; Webster, J.; Johnson, R.; Beynnon, B. Gender differences in knee injury epidemiology among competitive alpine ski racers. Lowa Orthop. J. 1998, 18, 64–66. [Google Scholar]
- Fleming, B.C.; Renstrom, P.A.; Beynnon, B.D.; Engstrom, B.; Peura, G.D.; Badger, G.J.; Johnson, R.J. The effect of weightbearing and external loading on anterior cruciate ligament strain. J. Biomech. 2001, 34, 163–170. [Google Scholar] [CrossRef]
- Donnelly, C.J.; Lloyd, D.G.; Elliott, B.C.; Reinbolt, J.A. Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: Implications for ACL injury risk. J. Biomech. 2012, 45, 1491–1497. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006, 34, 299–311. [Google Scholar] [CrossRef]
- McLean, S.G.; Huang, X.; van den Bogert, A.J. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: Implications for ACL injury. Clin. Biomech. 2005, 20, 863–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohtadi, N.G.; Chan, D.S.; Dainty, K.N.; Whelan, D.B. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst. Rev. 2011, 7, CD005960. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef]
- Yu, B.; Lin, C.F.; Garrett, W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of anterior cruciate ligament injury. J. Orthop. 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Griffin, L.; Agle, J.; Albohm, M.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L.; et al. Noncontact anterior cruciate ligament injuries: Risk factors and prevention strategies. J. Am. Acad. Orthop. Surg. 2000, 88, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Kawamori, N.; Jackson, J.R.; Morris, R.T.; Sands, W.A.; Stone, M.H. Force–time curve characteristics of dynamic and isometric muscle actions of elite women Olympic weightlifters. J. Strength Cond. Res. 2005, 19, 741–748. [Google Scholar]
- Gwinn, D.E.; Wilckens, J.H.; McDevitt, E.R.; Ross, G.; Kao, T.C. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am. J. Sports Med. 2000, 28, 98–102. [Google Scholar] [CrossRef]
- Kawamori, N.; Rossi, S.J.; Justice, B.D.; Haff, E.E.; Pistilli, E.E.; O’Bryant, H.S.; Stone, M.H.; Haff, G.G. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J. Strength Cond. Res. 2006, 20, 483–491. [Google Scholar]
- Kiapour, A.M.; Wordeman, S.C.; Paterno, M.V.; Quatman, C.E.; Levine, J.W.; Goel, V.K.; Demetropoulos, C.K.; Hewett, T.E. Diagnostic value of knee arthrometry in the prediction of anterior cruciate ligament strain during landing. Am. J. Sports Med. 2014, 42, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Shultz, S.J.; Schmitz, R.J. Effects of transverse and frontal plane knee laxity on hip and knee neuromechanics during drop landings. Am. J. Sports Med. 2009, 37, 1821–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Min | Max | Mean | SD | |
---|---|---|---|---|
Age | 19 | 21 | 19.57 | 0.787 |
Height (cm) | 153 | 177 | 164.21 | 8.113 |
Weight (kg) | 53 | 68 | 60.43 | 5.987 |
LFL | SSL | URL | ||||
---|---|---|---|---|---|---|
Double Leg | Single Leg | Double Leg | Single Leg | Double Leg | Single Leg | |
Hip | −49 ± 12.8 | −51.7 ± 22.3 | −43.3 ± 13.7 | * −63.9 ± 23.1 | * −44.2 ± 13.1 | * −59.2 ± 21.9 |
Knee | −44.8 ± 13.6 | −61.2 ± 22 | −44.9 ± 12.7 | −64.9 ± 29.5 | −46.7 ± 16.6 | * −59.2 ± 26.1 |
Ankle | * 46 ± 8 | * 48 ± 13 | 45 ± 11 | 40 ± 6 | 58 ± 30 | 66 ± 34 |
LFL | SSL | URL | ||||
---|---|---|---|---|---|---|
Double Leg | Single Leg | Double Leg | Single Leg | Double Leg | Single Leg | |
Hip | −69.9 ± 27.3 | −77.1 ± 27.6 | −67.8 ± 22.6 | * −81.9 ± 33.8 | −68.4 ± 21 | * −87.6 ± 50.7 |
Knee | −36 ± 11.9 | −39.7 ± 19.2 | −36.1 ± 12.8 | −43.7 ± 27.7 | * −34.3 ± 10.7 | * −45.1 ± 30.6 |
Ankle | 39.7 ± 6.2 | 41.2 ± 6.9 | 37.8 ± 6 | 38.4 ± 4.7 | * 23 ± 18.6 | * 16.7 ± 21.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamari, M.; Rakwal, R.; Yoshida, T.; Tanigawa, S.; Kuki, S. Correlation of Kinematics and Kinetics of Changing Sagittal Plane Body Position during Landing and the Risk of Non-Contact Anterior Cruciate Ligament Injury. Appl. Sci. 2021, 11, 7773. https://doi.org/10.3390/app11177773
Kamari M, Rakwal R, Yoshida T, Tanigawa S, Kuki S. Correlation of Kinematics and Kinetics of Changing Sagittal Plane Body Position during Landing and the Risk of Non-Contact Anterior Cruciate Ligament Injury. Applied Sciences. 2021; 11(17):7773. https://doi.org/10.3390/app11177773
Chicago/Turabian StyleKamari, Mahgolzahra, Randeep Rakwal, Takuya Yoshida, Satoru Tanigawa, and Seita Kuki. 2021. "Correlation of Kinematics and Kinetics of Changing Sagittal Plane Body Position during Landing and the Risk of Non-Contact Anterior Cruciate Ligament Injury" Applied Sciences 11, no. 17: 7773. https://doi.org/10.3390/app11177773
APA StyleKamari, M., Rakwal, R., Yoshida, T., Tanigawa, S., & Kuki, S. (2021). Correlation of Kinematics and Kinetics of Changing Sagittal Plane Body Position during Landing and the Risk of Non-Contact Anterior Cruciate Ligament Injury. Applied Sciences, 11(17), 7773. https://doi.org/10.3390/app11177773