Screening of the Honey Aroma as a Potential Essence for the Aromachology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Determination of Volatile Organic Compounds
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rimkute, J.; Moraes, C.; Ferreira, C. The Effects of Scent on Consumer Behaviour. Int. J. Consum. Stud. 2016, 40, 24–34. [Google Scholar] [CrossRef]
- Horská, E.; Šedík, P.; Berčík, J.; Krasnodębski, A.; Witczak, M.; Filipiak-Florkiewicz, A. Aromachology in food sector-aspects of consumer food products choice. Żywność Nauka Technologia Jakość 2018, 25, 33–41. Available online: https://wydawnictwo.pttz.org/wp-content/uploads/2019/02/03_Horska.pdf (accessed on 28 July 2021).
- American Marketing Association. Good Smells Are Good Marketing: How to Use Scent to Your Advantage. 2020. Available online: https://www.ama.org/marketing-news-home (accessed on 15 June 2021).
- Jurášková, O.; Horňák, P. Large Dictionary of Marketing Communications; Grada Publishing: Praha, Czech Republic, 2012; 272p. [Google Scholar]
- Berčík, J.; Virágh, R.; Kádeková, Z.; Duchoňová, T. Aroma marketing as a tool to increase turnover in a chosen business entity. Potravin. Slovak J. Food Sci. 2020, 14, 1161–1175. [Google Scholar] [CrossRef]
- Berčík, J.; Mravcová, A.; Gálová, J.; Mikláš, M. The use of consumer neuroscience in aroma marketing of a service company. Potravin. Slovak J. Food Sci. 2020, 14, 1200–1210. [Google Scholar] [CrossRef]
- Berčík, J.; Paluchová, J.; Neomániová, K. Neurogastronomy as a Tool for Evaluating Emotions and Visual Preferences of Selected Food Served in Different Ways. Foods 2021, 10, 354. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Grassmann, J. Terpenoids as plant antioxidants. In Vitamins and Hormones, 1st ed.; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2005; Volume 72, pp. 505–535. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef]
- Kopaczyk, J.M.; Warguła, J.; Jelonek, T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020, 180, 1–11. [Google Scholar] [CrossRef]
- Porres-Martínez, M.; Gonzáles-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Z. Naturforsch. 2016, 71, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vázquez, L.; Diáz-Maroto, M.C.; Pérez-Coello, M.S. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chem. 2007, 103, 601–606. [Google Scholar] [CrossRef]
- Serra Bonvehí, J.; Ventura Coll, F. Flavour index and aroma profiles of fresh and processed honeys. J. Sci. Food Agric. 2003, 83, 275–282. [Google Scholar] [CrossRef]
- Kružík, V.; Grégrová, A.; Ziková, A.; Čižková, H. Rape honey: Determination of botanical origin based on volatile compound profiles. J. Food Nutr. Res. 2019, 58, 339–348. [Google Scholar]
- Kružík, V.; Grégrová, A.; Rajchl, A.; Čížková, H. Study on honey quality evaluation and detection of adulteration by analysis of volatile compounds. J. Apic. Sci. 2017, 16, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, F.; Torres, P.; Oomah, B.D.; de Alencar, S.M.; Massarioli, A.P.; Marín-Venegas, R.; Albarral-Ávila, V.; Burgos-Diáz, C.; Ferrer, R.; Rubilar, M. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey. Food Res. Int. 2017, 94, 20–28. [Google Scholar] [CrossRef] [PubMed]
- da Costa, A.C.V.; Sousa, J.M.B.; da Silva, M.A.A.P.; Garruti, D.D.S.; Madruga, M.S. Sensory and volatile profiles of monofloral honeys produced by native stingless bees of the Brazilian semiarid region. Food Res. Int. 2018, 105, 110–120. [Google Scholar] [CrossRef] [PubMed]
- da Costa, A.C.V.; Sousa, J.M.B.; Bezerra, T.K.A.; da Silva, F.L.H.; Pastore, G.M.; da Silva, M.A.A.P.; Madruga, M.S. Volatile profile of monofloral honeys produced in Brazilian semiarid region by stingless bees and key volatile compounds. LWT 2018, 94, 198–207. [Google Scholar] [CrossRef]
- Bianchi, F.; Mangia, A.; Mattarozzi, M.; Musci, M. Characterization of the volatile profile of thistle honey using headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chem. 2011, 129, 1030–1036. [Google Scholar] [CrossRef]
- de Lima Morais da Silva, P.; de Lima, L.S.; Caetano, Í.K.; Torres, Y.R. Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC-MS. Food Res. Int. 2017, 102, 536–543. [Google Scholar] [CrossRef]
- Špánik, I.; Janáčová, A.; Šusterová, Z.; Jakubík, T.; Jánošková, N.; Novák, P.; Chlebo, R. Characterization of VOC composition of Slovak monofloral honeys by GCxGC-TOF-MS. Chem. Pap. 2012, 67, 127–134. [Google Scholar] [CrossRef]
- Dymerski, T.; Chmiel, T.; Mostafa, A.; Sliwinska, M.; Wisniewska, P.; Wardencki, W.; Namiesnik, J.; Gorecki, T. Botanical and Geographical Origin Characterization of Polish Honeys by Headspace SPME-GC×GC-TOFMS. Curr. Org. Chem. 2013, 17, 1–19. [Google Scholar] [CrossRef]
- XLSTAT (Addinsoft). Analyse de Données et Statistique avec MS Excel; Addinsoft: New York, NY, USA, 2014. [Google Scholar]
- Plutowska, B.; Chmiel, T.; Dymerski, T.; Wardencki, W. A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chem. 2011, 126, 1288–1298. [Google Scholar] [CrossRef]
- Patrignami, M.; Fagúndez, G.A.; Tananaki, C.; Thrasyvoulou, A.; Lupano, C.E. Volatile compounds of Argentinean honeys: Correlation with floral and geographical origin. Food Chem. 2018, 246, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Seisonen, S.; Kivima, E.; Ven, K. Characterization of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry. Food Chem. 2015, 169, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Tanleque-Alberto, F.; Juan-Borrás, M.; Escriche, I. Quality parameters, pollen and volatile profiles of honey from North and Central Mozambique. Food Chem. 2019, 277, 543–553. [Google Scholar] [CrossRef]
- Kaškoniené, V.; Venskutonis, P.R.; Čeksteryté, V. Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chem. 2008, 111, 988–997. [Google Scholar] [CrossRef]
- Radovic, B.S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey. Food Chem. 2001, 72, 511–520. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Rosenvald, S.; Laaksonen, O.; Vanag, A.; Ollikka, T.; Vene, K.; Yang, B. Sensory and chemical profiles of Finnish honeys of different botanical origins and consumer preferences. Food Chem. 2018, 246, 351–359. [Google Scholar] [CrossRef]
- Leng, P.; Hu, H.-W.; Cui, A.-H.; Tang, H.-J.; Liu, Y.-G. HS-GC-IMS with PCA to analyze volatile flavor compounds of honey peach packaged with different preservation methods during storage. LWT 2021, 149, 1–9. [Google Scholar] [CrossRef]
- Escriche, I.; Sobrino-Gregorio, L.; Conchado, A.; Juan-Borrás, M. Volatile profile in the accurate labelling of monofloral honey. The case of lavender and thyme honey. Food Chem. 2017, 226, 61–68. [Google Scholar] [CrossRef]
- Ruisinger, B.; Schieberle, P. Characterization of the Key Aroma Compounds in Rape Honey by Means of the Molecular Sensory Science Concept. J. Agric. Food Chem. 2012, 60, 4186–4194. [Google Scholar] [CrossRef] [PubMed]
- Bonaga, G.; Giumanini, A.G. The Volatile Fraction of Chestnut Honey. J. Apic. Res. 1986, 25, 113–120. [Google Scholar] [CrossRef]
- Guyot, C.; Bouseta, A.; Scheirman, V.; Collin, S. Floral Origin Markers of Chestnut and Lime Tree Honeys. J. Agric. Food Chem. 1998, 46, 625–633. [Google Scholar] [CrossRef]
- Jerković, I.; Kuś, P.M. Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014, 4, 31710–31728. [Google Scholar] [CrossRef]
- Gonzales-Coloma, A.; Reina, M.; Diaz, C.E.; Fraga, B.M.; Santana-Meridas, O. Natural Product-Based Biopesticides for Insect Control. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2013, 1–55. [Google Scholar] [CrossRef]
- The International Fragrance Association. Fragrance Ingredient Glossary. 2020. Available online: https://ifrafragrance.org/docs/default-source/glossary/ifra-fragrance-ingredient-glossary---april-2020.pdf?sfvrsn=dc0e87ff_2&fbclid=IwAR0zezEAAkz2xTt7G2w-DIpJg6-gjBkYn4sbM8jx7kO1uXc04rsvx5_gw1A (accessed on 20 June 2021).
- Rowland, C.Y.; Blackman, A.J.; D’Arcy, B.R.; Rintoul, G.B. Comparison of organic extractives found in leatherwood (Eucryphia lucida) honey and leatherwood flowers and leaves. J. Agric. Food Chem. 1995, 43, 753–763. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Aroma investigation of unifloral Greek citrus honey using solid-phase microextraction coupled to gas chromatographic-mass spectrometric analysis. Food Chem. 2017, 100, 396–404. [Google Scholar] [CrossRef]
- Berger, R.G. (Ed.) Flavours and Fragrances. Chemistry, Bioprocessing and Sustainability; Springer: Hannover, Germany, 2007; Volume 648, ISBN 978-3-540-49338-9. [Google Scholar] [CrossRef]
Kind of Honey | Sample No. | Location (City) | Content of Sugar (°Brix 1 ± SD 2) |
---|---|---|---|
Honeydew | 1 | Kremnica | 81.0 ± 0.0 |
2 | Sabinov | 80.6 ± 0.0 | |
3 | Nitra | 80.8 ± 0.0 | |
4 | Senec | 81.6 ± 0.0 | |
5 | Levoča | 81.0 ± 0.0 | |
Acacia | 6 | Choča | 80.0 ± 0.0 |
7 | Oponice | 81.2 ± 0.0 | |
8 | Šala | 79.0 ± 0.0 | |
9 | Levice | 80.2 ± 0.0 | |
10 | Krupina | 82.2 ± 0.0 | |
Linden | 11 | Nitra | 80.0 ± 0.0 |
12 | Zvolen | 77.0 ± 0.0 | |
13 | Krupina | 78.2 ± 0.0 | |
14 | Senica | 78.8 ± 0.0 | |
15 | Komárno | 80.2 ± 0.0 | |
Sunflower | 16 | Hlohovec | 79.0 ± 0.0 |
17 | Oponice | 79.0 ± 0.0 | |
18 | Šala | 78.6 ± 0.0 | |
19 | Levice | 81.8 ± 0.0 | |
20 | Komárno | 80.2 ± 0.0 |
Kind of Honey | Sample No. | Rretention Time (min) | Compound | Percentage Content (%) | SD | Literature |
---|---|---|---|---|---|---|
Acacia | 9 | 10.5 | Linalool oxide | 1.13 | 0.15 | [16,17,18,19,20,23,24,26,27,28,29] |
8 | Linalool oxide | 3.90 | 0.25 | |||
8 | 3.1 | 3-methyl-2-Butenal | 0.86 | 0.08 | [26,27] | |
8 | 8.6 | 5,6-dimethylene-Cyclooctene | 0.42 | 0.00 | – | |
6 | 23.9 | 2,6,10-Trimethyltridecane | 0.48 | 0.14 | – | |
Linden | 13 | 13.4 | Nerol oxide | 0.60 | 0.07 | [19,20,22,27] |
11 | Nerol oxide | 1.60 | 0.07 | |||
15 | 11.4 | Linalyl acetate | 0.56 | 0.23 | – | |
14 | 18.4 | ethyl Nonanoate | 0.57 | 0.24 | [18,24,27] | |
12 | ethyl Nonanoate | 1.30 | 0.25 | |||
15 | 13.8 | Lilac aldehyde D | 6.60 | 0.65 | [14,16,21,23,26,30] | |
12 | 19.6 | ethyl Citronellate | 5.17 | 0.37 | – | |
12 | 21.8 | ethyl Decanoate | 0.55 | 0.20 | [15,19,20,22,24,27] | |
12 | 20.2 | ethyl Benzenepropanoate | 0.41 | 0.07 | [24] | |
14 | 13.9 | ethyl Benzoate | 7.63 | 2.48 | [16,18,19,20,22,26,27,28,31,32] | |
13 | ethyl Benzoate | 1.76 | 0.65 | |||
12 | 23.6 | ethyl 4-isopropylbenzoate | 0.43 | 0.13 | – | |
12 | 1.8 | Ethyl acetate | 8.78 | 3.40 | [19,20,24,26,29,30,31,33,34] | |
14 | 16.6 | ethyl Benzeneacetate | 1.70 | 0.29 | [22,24] | |
13 | ethyl Benzeneacetate | 0.43 | 0.04 | |||
12 | ethyl Benzeneacetate | 1.18 | 0.34 | |||
12 | 17.0 | 2-phenylethyl Acetate | 0.55 | 0.08 | [16,19,20,26,27] | |
13 | 20.0 | 3,5-Dimethyl-2-octanone | 0.71 | 0.16 | [26] | |
12 | 2.9 | 3-methyl-1-Pentanal | 1.70 | 0.77 | [24] | |
13 | 4.0 | 3-methyl-1-Pentanol | 0.59 | 0.11 | – | |
12 | 3-methyl-1-Pentanol | 4.57 | 0.43 | |||
15 | 6.2 | 3-methyl-Pentanoic acid | 1.16 | 0.31 | [16,23,35] | |
15 | 3.9 | 4,4-Dimethyl-3-oxopentanenitrile | 3.76 | 0.54 | – | |
11 | 8.64 | 7-exo-ethenyl-Bicyclo[4.2.0]oct-1-ene | 0.85 | 0.05 | – | |
13 | 10.2 | Acetophenone | 0.37 | 0.08 | [15,24,27,28,36,37] | |
15 | 1.6 | Dimethyl sulfide | 5.36 | 1.51 | [17,24,29,32,37], | |
Honeydew | 3 | 9.3 | trans-beta-Ocimene | 0.53 | 0.10 | [19,20,23,27] |
2 | 21.9 | Tetradecane | 2.42 | 0.28 | [23] | |
4 | 4.9 | Santene | 0.28 | 0.12 | – | |
1 | 13.82 | p-Mentha-1,5-dien-8-ol | 0.59 | 0.05 | – | |
1 | p-Mentha-1,5-dien-8-ol | 4.80 | 0.48 | |||
2 | 15.0 | Dodecane | 1.99 | 0.29 | [23,24,27] | |
1 | 14.9 | 2-Propylphenol, methyl ether | 0.52 | 0.08 | – | |
3 | 9.6 | 3-Carene | 0.55 | 0.10 | [20] | |
3 | 2.0 | 3-methyl-Butanal | 0.94 | 0.02 | [17,24,29,30,31,32,33,34,35] | |
4 | 16.4 | 4-(1-methylethyl)-Benzaldehyde | 0.23 | 0.00 | – | |
1 | 8.58 | alpha-Terpinene | 0.57 | 0.04 | [18,19,20,22,23,27,31] | |
3 | 7.8 | beta-Myrcene | 0.92 | 0.20 | [22,23] | |
1 | 9.0 | beta-Phellandrene | 0.45 | 0.02 | [30] | |
1 | 7.82 | Carveol | 0.77 | 0.01 | [23] | |
1 | 20.5 | Cosmene | 0.84 | 0.09 | [20] | |
3 | 8.9 | D-Limonene | 1.67 | 0.36 | [17,18,19,20,23,24,27,29,32] | |
2 | 19.0 | 2-Methoxy-4-vinylphenol | 0.21 | 0.02 | [24,35] | |
1 | 2-Methoxy-4-vinylphenol | 0.41 | 0.00 | |||
1 | 6.7 | 2,4-Thujadiene | 0.42 | 0.04 | [22,23] | |
3 | 4.3 | 3-Furanmethanol | 0.79 | 0.28 | – | |
3 | 3.1 | 2,3-Butanediol | 0.69 | 0.07 | [19,23,32] | |
3 | 7.4 | 1-Octen-3-ol | 0.86 | 0.18 | [21,31,32] | |
Sunflower | 18 | 23.1 | β-Calarene | 2.75 | 0.90 | – |
20 | 16.1 | Cyclofenchene | 1.20 | 0.37 | – | |
19 | Cyclofenchene | 0.64 | 0.04 | |||
18 | Cyclofenchene | 1.39 | 0.18 | |||
17 | Cyclofenchene | 0.59 | 0.09 | |||
16 | Cyclofenchene | 0.89 | 0.11 | |||
20 | 16.0 | 2-Bornene | 0.68 | 0.42 | – | |
19 | 2-Bornene | 0.43 | 0.12 | |||
18 | 2-Bornene | 0.44 | 0.10 | |||
16 | 2-Bornene | 0.81 | 0.27 |
from\to | Acacia | Honeydew | Linden | Sunflower | Total | % Correct |
---|---|---|---|---|---|---|
Acacia | 10 | 1 | 0 | 4 | 15 | 66.67% |
Honeydew | 3 | 12 | 0 | 0 | 15 | 80.00% |
Linden | 0 | 0 | 12 | 0 | 12 | 100.00% |
Sunflower | 0 | 0 | 0 | 15 | 15 | 100.00% |
Total | 13 | 13 | 12 | 19 | 57 | 85.96% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štefániková, J.; Martišová, P.; Šnirc, M.; Šedík, P.; Vietoris, V. Screening of the Honey Aroma as a Potential Essence for the Aromachology. Appl. Sci. 2021, 11, 8177. https://doi.org/10.3390/app11178177
Štefániková J, Martišová P, Šnirc M, Šedík P, Vietoris V. Screening of the Honey Aroma as a Potential Essence for the Aromachology. Applied Sciences. 2021; 11(17):8177. https://doi.org/10.3390/app11178177
Chicago/Turabian StyleŠtefániková, Jana, Patrícia Martišová, Marek Šnirc, Peter Šedík, and Vladimír Vietoris. 2021. "Screening of the Honey Aroma as a Potential Essence for the Aromachology" Applied Sciences 11, no. 17: 8177. https://doi.org/10.3390/app11178177