Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.3. Historical Trends
2.4. Projections under Climate Change
3. Results
3.1. Trends
3.2. Climate Regional Drivers
3.2.1. Precipitation
3.2.2. Temperatures
3.3. Projected Trends
4. Discussion
4.1. Historical Trends
4.2. Projections Trends under Climate Change Scenarios
4.3. Local Impacts on the Population, Agriculture, and Aquatic Ecosystems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gates, B. How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need, 1st ed.; Penguin Books Limited: New York, NY, USA, 2021; pp. 1–349. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sci. Res. J. 2021, 25, 69–84. [Google Scholar] [CrossRef]
- UNESCO. UN-Water. United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020; pp. 1–219. [Google Scholar]
- United Nations. The United Nations World Water Development Report 2021: Valuing Water; UNESCO: Paris, France, 2021; pp. 1–186. [Google Scholar]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Precipitation patterns in Usumacinta and Grijalva basins (southern Mexico) under a changing climate. Rev. Bio Cienc. 2020, 7, 1–22. [Google Scholar] [CrossRef]
- Arceo-Gómez, E.O.; Hernández-Cortés, D.; López-Feldman, A. Droughts and rural households’ wellbeing: Evidence from Mexico. Clim. Chang. 2020, 162, 1197–1212. [Google Scholar] [CrossRef]
- Colorado-Ruiz, G.; Cavazos, T.; Salinas, J.A.; De Grau, P.; Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol. 2018, 38, 5699–5716. [Google Scholar] [CrossRef]
- Bravo-Cabrera, J.L.; Azpra-Romero, E.; Zarraluqui-Such, V.; Gay-García, C. Effects of El Niño in Mexico during rainy and dry seasons: An extended treatment. Atmósfera 2017, 30, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Montero-Martínez, M.J.; Santana-Sepúlveda, J.S.; Pérez-Ortiz, N.I.; Pita-Díaz, O.; Castillo-Liñan, S. Comparing climate change indices between a northern (arid) and a southern (humid) basin in Mexico during the last decades. Adv. Sci. Res. 2018, 15, 231–237. [Google Scholar] [CrossRef]
- Rivera-Hernández, B.; Aceves-Navarro, L.A.; Arrieta-Rivera, A.; Juárez-López, J.F.; Méndez-Adorno, J.M.; Ramos-Alvarez, C. Evidencias del cambio climático en el estado de Tabasco durante el periodo 1961–2010. Rev. Mex. Cienc. Agrícolas 2016, 7, 2645–2656. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res. Atmos. 2005, 110, 1–15. [Google Scholar] [CrossRef]
- Magaña, V.; Amadros, J.A.; Medina, S. The midsummer drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Méndez-González, J.; Ramírez-Leyva, A.; Cornejo-Oviedo, E.; Zárate-Lupercio, A.; Cavazos-Pérez, T. Teleconexiones de la Oscilación Decadal del Pacífico (PDO) a la precipitación y temperatura en México. Investig. Geogr. 2010, 73, 57–70. [Google Scholar] [CrossRef]
- Méndez, M.; Magaña, V. Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Clim. 2010, 23, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Velázquez, M. Visión climática de la precipitación en la cuenca del Río Usumacinta. In La Cuenca del Río Usumacinta desde la Perspectiva del Cambio Climático; Soares, D., García, G.A., Eds.; Instituto Mexicano de Tecnología del Agua: Juitepec, Morelos, México, 2017; pp. 1–417. [Google Scholar]
- Fuentes-Franco, R.; Giorgi, F.; Pavia, E.G.; Graef, F.; Coppola, E. Seasonal precipitation forecast over Mexico based on a hybrid statistical-dynamical approach. Int. J. Climatol. 2018, 38, 4051–4065. [Google Scholar] [CrossRef]
- Imbach, P.; Chou, S.C.; Lyra, A.; Rodrigues, D.; Rodríguez, D.; Latinovic, D.; Siqueira, G.; Silva, A.; Garofolo, L.; Georgiou, S. Future climate change scenarios in Central America at high spatial resolution. PLoS ONE 2018, 13, e0193570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Jiménez, R.; Giraldo-Osorio, J.D.; Brenes-Torres, A.; Avendaño-Flores, I.; Nauditt, A.; Hidalgo-León, H.G.; Birkel, C. Spatial and temporal patterns, trends and teleconnection of cumulative rainfall deficits across Central America. Int. J. Climatol. 2019, 39, 1940–1953. [Google Scholar] [CrossRef]
- Hidalgo, H.G. Climate variability and change in Central America: What does it mean for water managers? Front. Water 2021, 2, 1–5. [Google Scholar] [CrossRef]
- Fuentes-Franco, R.; Coppola, E.; Giorgi, F.; Pavia, E.G.; Diro, G.T.; Graef, F. Inter-annual variability of precipitation over Southern Mexico and Central America and its relationship to sea surface temperature from a set of future projections from CMIP5 GCMs and RegCM4 CORDEX simulations. Clim. Dyn. 2014, 45, 425–440. [Google Scholar] [CrossRef]
- Guillén-Oviedo, H.S.; Cid-Serrano, L.R.; Alfaro-Martínez, E.J. Comparación de parámetros de valor extremo de la distribución generalizada asociada a eventos de precipitación extrema en América Central. Uniciencia 2020, 34, 111–128. [Google Scholar] [CrossRef]
- Vargas-Ulate, G. Las lluvias en América central: Una climatología geográfica. Anu. Estud. Centroam. 2001, 27, 7–19. [Google Scholar] [CrossRef]
- González, J.E.; Georgescu, M.; Lemos, M.C.; Hosannah, N.; Niyogi, D. Climate change’s pulse is in Central America and the Caribbean. Eos 2017, 98. [Google Scholar] [CrossRef]
- Campbell, J.D.; Taylor, M.A.; Stephenson, T.S.; Watson, R.A.; Whyte, F.S. Future climate of the Caribbean from a regional climate model. Int. J. Climatol. 2011, 31, 1866–1878. [Google Scholar] [CrossRef]
- Singh, B. Climate changes in the greater and southern Caribbean. Int. J. Climatol. 1997, 17, 1093–1114. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Taylor, M.A.; Campbell, J.; Stephenson, T.; New, M.; Centella, A.; Benzanilla, A.; Charlery, J. A review of observed and projected changes in climate for the islands in the Caribbean. Atmósfera 2013, 26, 283–309. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.A.; Enfield, D.B.; Chen, A.A. Influence of tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geohys. Res. 2002, 107, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.C.; Weech, P.S. Climate change in the Bahamas? Evidence in the meteorological records. Bahamas J. Sci. 2001, 5, 22–32. [Google Scholar]
- Stephenson, T.S.; Vincent, L.A.; Allen, T.; Van Meerbeeck, C.J.; McLean, N.; Peterson, T.C.; Taylor, M.A.; Aaron-Morrison, A.P.; Auguste, T.; Bernard, D.; et al. Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int. J. Climatol. 2014, 34, 2957–2971. [Google Scholar] [CrossRef]
- Chen, A.A.; Taylor, M. Investigating the link between early season Caribbean rainfall and the El Niño year. Int. J. Climatol. 2002, 22, 87–106. [Google Scholar] [CrossRef]
- Giddings, L.; Soto, M.; Rutherford, B.M.; Maarouf, A. Standardized precipitation index zones for México. Atmósfera 2005, 18, 33–56. [Google Scholar]
- Campbell, J.D.; Taylor, M.A.; Bezanilla-Morlot, A.; Stephenson, T.S.; Centella-Artola, A.; Clarke, L.A.; Stephenson, K.A. Generating projections for the Caribbean at 1.5, 2.0, and 2.5 °C from a high-resolution ensemble. Atmosphere 2021, 12, 328. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Alfaro, E.J.; Hernández-Castro, F.; Pérez-Briceño, P.M. Identification of tropical cyclones’ critical positions associated with extreme precipitation events in central america. Atmosphere 2020, 11, 1123. [Google Scholar] [CrossRef]
- Hannah, L.; Donatti, C.I.; Harvey, C.A.; Alfaro, E.; Rodriguez, D.A.; Bouroncle, C.; Castellanos, E.; Diaz, F.; Fung, E.; Hidalgo, H.G.; et al. Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Clim. Chang. 2017, 141, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Calzadilla, A.; Rehdanz, K.; Tol, R.S.J. Water scarcity and the impact of improved irrigation management: A computable general equilibrium analysis. Agric. Econ. 2011, 42, 305–323. [Google Scholar] [CrossRef]
- Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.; Ringler, C. Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Eco. Econ. 2013, 93, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.S.; Hegde, V.S.; Habibi, A.B.; Dia, M.; Verma, S. Climate change, agriculture and food security. In Food Security and Climate Change, 1st ed.; Yadav, S.S., Redden, R.J., Hatfield, J.L., Ebert, A.W., Hunter, D., Eds.; JohnWiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 1–24. [Google Scholar]
- Fei, Q.; Li, J.; Luo, Y.; Ma, K.; Niu, B.; Mu, C.; Gao, H.; Li, X. Plant molecular responses to the elevated ambient temperatures expected under global climate change. Plant Sig. Behav. 2018, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sauz-Sánchez, J.J.; Rodiles-Hernández, R.; Andrade-Velázquez, M.; Mendoza-Carranza, M. Modelling the potential distribution of two tropical freshwater fish species under climate change scenarios. Aquat. Conserv. Mar. Freshw. Ecosyst. In press.
- Heidari, H.; Arabi, M.; Warziniack, T.; Kao, S.C. Assessing shifts in regional hydroclimatic conditions of U.S. River basins in response to climate change over the 21st century. Earth’s Future 2020, 8, 1–14. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchel, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. A summary of the CMIP5 experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Knutti, R.; Sedlácek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2012, 3, 369–373. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, H.G.; Alfaro, E.J. Skill of CMIP5 climate models in reproducing 20th century basic climate features in Central America. Int. J. Climatol. 2015, 35, 3397–3421. [Google Scholar] [CrossRef] [Green Version]
- Sperna Weiland, F.C.; Van Beek, L.P.H.; Kwadijk, J.C.J.; Bierkens, M.F.P. The ability of a GCM-forced hydrological model to reproduce global discharge variability. Hydrol. Earth Syst. Sci. 2010, 14, 1595–1621. [Google Scholar] [CrossRef] [Green Version]
- Elshamy, M.E.; Seierstad, I.A.; Sorteberg, A. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol. Earth Syst. Sci. 2009, 13, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century. Int. J. Geophys. 2012, 2012, 972896. [Google Scholar] [CrossRef] [Green Version]
- Shiru, M.S.; Chung, E.S.; Shahid, S.; Alias, N. GCM selection and temperature projection of Nigeria under different RCPs of the CMIP5 GCMS. Theor. Appl. Climatol. 2020, 141, 1611–1627. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Bradley, R.S.; Diaz, H.F. Climate change in Central America and Mexico: Regional climate model validation and climate change projections. Clim. Dyn. 2011, 37, 605–629. [Google Scholar] [CrossRef] [Green Version]
- Vichot-Llano, A.; Martinez-Castro, D.; Giorgi, F.; Bezanilla-Morlot, A.; Centella-Artola, A. Comparison of GCM and RCM simulated precipitation and temperature over Central America and the Caribbean. Theor. Appl. Climatol. 2020, 143, 389–402. [Google Scholar] [CrossRef]
- Moss, R.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2008; p. 25. [Google Scholar]
- Cavazos, T.; Salinas, J.A.; Martínez, B.; Colorado, G.; De Grau, P.; Prieto, R.; Conde, C.; Quintanar, A.; Santana, J.S.; Romero, R.C.; et al. Actualización de Escenarios de Cambio Climático para México como Parte de los Productos de la Quinta Comunicación Nacional. 2013. Available online: https://www.researchgate.net/publication/321274898 (accessed on 31 August 2021).
- Giorgi, F.; Mearns, L.O. Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from AOGCM Simulations via the Reliability Ensemble Averaging (REA) Method. J. Clim. 2002, 15, 1141–1158. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Montero-Martínez, M.J. Fiabilidad de los modelos del CMIP5 para la cuenca del río Usumacinta bajo el método REA. Digit. Cienc. 2019, 12, 14–21. Available online: http://ciencia.uaq.mx/index.php/ojs/article/view/26 (accessed on 31 August 2021).
- Aguilar, C.M.Z.; Velázquez, M.A.; Manzanilla, A.V. Proyecciones de Cambio Climático para la zona centro e Villahermosa, Tabasco. Kuxulkab 2020, 26, 21–26. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, X.; Giorgi, F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Clim. Res. 2010, 41, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Clogg, C.C.; Petkova, E.; Haritou, A. Statistical methods for comparing regression coefficients between models. Am. J. Sociol. 1995, 100, 1261–1293. Available online: http://www.jstor.org/stable/2782277 (accessed on 31 August 2021). [CrossRef]
- Paternoster, R.; Brame, R.; Mazerolle, P.; Piquero, A. Using the correct statistical test for the equality of regression coefficients. Criminology 1998, 36, 859–866. [Google Scholar] [CrossRef]
- Jones, P.D.; Harpham, C.; Harris, I.; Goodess, C.M.; Burton, A.; Centella-Artola, A.; Taylor, M.A.; Bezanilla-Morlot, A.; Campbell, J.D.; Stephenson, T.S.; et al. Long-term trends in precipitation and temperature across the Caribbean. Int. J. Climatol. 2016, 36, 3314–3333. [Google Scholar] [CrossRef] [Green Version]
- Giannini, A.; Kushnir, Y.; Cane, M.A. Interannual Variability of Caribbean Rainfall, ENSO, and the Atlantic Ocean. J. Clim. 2000, 13, 297–311. [Google Scholar] [CrossRef]
- Anchukaitis, K.J.; Taylor, M.J.; Martin-Fernandez, J.; Pons, D.; Dell, M.; Chopp, C.; Castellanos, E.J. Annual chronology and climate response in Abies guatemalensis Rehder (Pinaceae) in Central America. Holoceno 2012, 23, 270–277. [Google Scholar] [CrossRef]
- Anchukaitis, K.J.; Taylor, M.J.; Leland, C.; Pons, D.; Martin-Fernandez, J.; Castellanos, E. Tree-ring reconstructed dry season rainfall in Guatemala. Clim. Dyn. 2014, 45, 1537–1546. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Villanueva, J.; Cerano, J.; Burns, J.N.; Griffin, D.; Cook, B.I.; Acuña, R.; Torbenson, M.C.A.; et al. The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev. 2016, 149, 34–60. [Google Scholar] [CrossRef] [Green Version]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Guillet, S.; Madrigal-González, J.; Stoffel, M. Neotropical Hypericum irazuense shrubs reveal recent ENSO variability in Costa Rican páramo. Dendrochronologia 2020, 61, 1–10. [Google Scholar] [CrossRef]
- Corrales-Suastegui, A.; Fuentes-Franco, R.; Pavia, E.G. The mid-summer drought over Mexico and Central America in the 21st century. Int. J. Climatol. 2020, 40, 1703–1715. [Google Scholar] [CrossRef]
- Kim, H.-J.; An, S.-I.; Kim, D. Timescale-dependent AMOC–AMO relationship in an earth system model of intermediate complexity. Int. J. Climatol. 2021, 41, 3298–3306. [Google Scholar] [CrossRef]
- NOAA, AMO (Atlantic Multidecadal Oscillation) Index. Climate Timeseries. 2021. Available online: https://psl.noaa.gov/data/timeseries/AMO/ (accessed on 10 August 2021).
- Hidalgo, H.G.; Alfaro, E.J.; Quesada-Montano, B. Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies. Clim. Chang. 2016, 141, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Cavazos, T.; Luna-Niño, R.; Cerezo-Mota, R.; Fuentes-Franco, R.; Méndez, M.; Martínez, L.F.; Valenzuela, E. Climatic trends and regional climate models intercomparison over the CORDEXCAM (Central America, Caribbean and Mexico) domain. Int. J. Climatol. 2019, 40, 1396–1420. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, S.; Adhikary, N.C. Influence of climatic indices (AMO, PDO, and ENSO) and temperature on rainfall in the Northeast Region of India. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.; Kulakowski, D.; Holz, A. Multidecadal climate variability and climate interactions affect subalpine fire occurrence, western Colorado (USA). Ecology 2007, 88, 2891–2902. [Google Scholar] [CrossRef] [Green Version]
- Bonomo, S.; Ferrante, G.; Palazzi, E.; Pelosi, N.; Lirer, F.; Viegi, G.; La Grutta, S. Evidence for a link between the Atlantic multidecadal oscillation and annual asthma mortality rates in the US. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabos, W.; Sein, D.V.; Durán-Quesada, A.; Liguori, G.; Koldunov, N.V.; Martínez-López, B.; Alvarez, F.; Sieck, K.; Limareva, N.; Pinto, J.G. Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Clim. Dyn. 2018, 52, 4305–4328. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kinter, J.; Dirmeyer, P.A.; Pan, Z.; Adams, J. Multidecadal Climate Variability and the? Warming Hole? in North America: Results from CMIP5 Twentieth- and Twenty-First-Century Climate Simulations. J. Clim. 2013, 26, 3511–3527. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kinter, J.L.; Niyogi, D. Evaluation of Temperature and Precipitation Trends and Long-Term Persistence in CMIP5 Twentieth-Century Climate Simulations. J. Clim. 2013, 26, 4168–4185. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Hu, M.; Li, Q.; Yan, Z.; Jones, P. Global land surface air temperature dynamics since 1880. Int. J. Climatol. 2018, 38, 466–474. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Special report on emissions scenarios. In A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000; 599p, Available online: https://www.ipcc.ch/report/emissions-scenarios/ (accessed on 31 August 2021).
- Fuentes-Franco, R.; Coppola, E.; Giorgi, F.; Graef, F.; Pavia, E.G. Assessment of RegCM4 simulated inter-annual variability and daily-scale statistics of temperature and precipitation over Mexico. Clim. Dyn. 2013, 42, 629–647. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Roby, N.; Stewart-Frey, I.T.; Bacon, C.M. Projected twenty-first-century changes in the Central American mid-summer drought using statistically downscaled climate projections. Reg. Environ. Chang. 2017, 17, 2421–2432. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.; Braun, J. von Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Donatti, C.I.; Harvey, C.A.; Martinez-Rodriguez, M.R.; Vignola, R.; Rodriguez, C.M. Vulnerability of smallholder farmers to climate change in Central America and Mexico: Current knowledge and research gaps. Clim. Dev. 2018, 11, 264–286. [Google Scholar] [CrossRef] [Green Version]
- Sauz-Sánchez, J.J.; Andrade-Velázquez, M.; Rodiles-Hernández, R.; Mendoza-Carranza, M. El Futuro del Pejelagarto y la Tenguayaca, Impacto del Cambio Climático Sobre la Distribución de Peces Dulceacuícolas en ¿Qué y Cómo Estudiamos las Especies que Habitan el Trópico? Universidad de Ciencias y Artes de Chiapas: Chiapas, Mexico, 2021. [Google Scholar]
Id | Models | Scenarios RCP |
---|---|---|
1 | BCC-CSM | 4.5, 6.0, 8.5 |
2 | CanESM2 | 4.5, 8.5 |
3 | CNRM-CM5 | 4.5, 8.5 |
4 | CSIRO-Mk3-6-0 | 4.5 |
5 | GFDL | 6.0, 8.5 |
6 | GISS-E2-R | 4.5, 6.0, 8.5 |
7 | HadGEM2-ES | 4.5, 6.0, 8.5 |
8 | inmcm4 | 4.5, 8.5 |
9 | IPSL-CM5A-LR | 4.5, 6.0, 8.5 |
10 | MIROC5 | 4.5, 6.0, 8.5 |
11 | MIROC-ESM-CHEM | 4.5, 6.0 |
12 | MIROC-ESM | 4.5, 6.0, 8.5 |
13 | MPI-ESM-LR | 4.5, 8.5 |
14 | MRI-CGCM3-M | 4.5, 8.5 |
15 | NorESM1-M | 4.5, 6.0, 8.5 |
ID | Latitude | Longitude | Country/State | Close City |
---|---|---|---|---|
Southeast Mexico-Yucatan Peninsula | ||||
1 | 16.75° | −92.25° | Chiapas | San Cristobal |
2 | 17.75° | −92.25° | Tabasco | Villahermosa |
3 | 18.75° | −89.25° | Campeche | Champoton |
4 | 20.25° | −87.75° | Quintana Roo | Felipe Carrillo Puerto |
5 | 21.25° | −88.75° | Yucatan | Buctzotz |
Central America | ||||
6 | 9.25° | −79.25° | Panama | Panama City |
7 | 9.75° | −84.25° | Costa Rica | San José |
8 | 12.25° | −86.25° | Nicaragua | Managua |
9 | 13.75° | −89.25° | El Salvador | San Salvador |
10 | 14.25° | −87.25° | Honduras | Tegucigalpa |
11 | 14.25° | −90.25° | Guatemala | Guatemala |
12 | 17.25° | −88.75° | Belize | Belmopan |
Caribbean | ||||
13 | 22.75° | −81.75° | Cuba | Limonar |
14 | 19.25° | −72.75° | Haiti | Aribonite |
15 | 19.25° | −69.75° | Dominican Republic | María Trinidad Sánchez |
16 | 18.25° | −77.25° | Jamaica | St. Ann Parish |
17 | 18.25° | −65.75° | Puerto Rico | San Juan |
Num | Tmp (°C/year) (std err) | Tmx (°C/year) (std err) | Tmn (°C/year) (std err) | Pr (mm/year) (std err) |
---|---|---|---|---|
1 | +0.0235 (0.00191) | +0.0282 (0.00281) | +0.0187 (0.00205) | +0.162 (0.164) |
2 | +0.0215 (0.0019) | +0.0263 (0.00281) | +0.0164 (0.00204) | +0.195 (0.24) |
3 | +0.0196 (0.00202) | +0.0186 (0.00297) | +0.0204 (0.00236) | +0.265 (0.0958) |
4 | +0.0183 (0.0022) | +0.0185 (0.00289) | +0.0184 (0.00281) | +0.248 (0.117) |
5 | +0.0167 (0.00259) | +0.0162 (0.00323) | +0.0172 (0.003) | +0.175 (0.0905) |
6 | +0.0134 (0.00224) | −0.00278 (0.00365) | +0.0293 (0.00303) | −0.0364 (0.288) |
7 | +0.0155 (0.0027) | +0.0155 (0.0027) | +0.0155 (0.0027) | −0.386 (0.221) |
8 | +0.0192 (0.00217) | +0.0216 (0.00234) | +0.0173 (0.00272) | −0.312 (0.145) |
9 | +0.0236 (0.00191) | +0.0286 (0.00261) | +0.0189 (0.00228) | −0.064 (0.195) |
10 | +0.0224 (0.00202) | +0.0257 (0.00261) | +0.0188 (0.00254) | −0.0657 (0.163) |
11 | +0.0252 (0.00191) | +0.03 (0.00275) | +0.0203 (0.00211) | −0.0488 (0.258) |
12 | +0.0217 (0.00178) | +0.0205 (0.00258) | +0.023 (0.00239) | +0.137 (0.171) |
13 | +0.0207 (0.00268) | +0.0152 (0.00291) | +0.0263 (0.00269) | +0.215 (0.18) |
14 | +0.017 (0.00258) | +0.0071 (0.00324) | +0.0269 (0.00287) | +0.0402 (0.148) |
15 | +0.0143 (0.00238) | +0.0115 (0.00256) | +0.0172 (0.00281) | +0.640 (0.236) |
16 | +0.0245 (0.00212) | +0.00928 (0.00253) | +0.0396 (0.00278) | −0.0681 (0.328) |
17 | + 0.0144 (0.00192) | +0.015 (0.00231) | +0.0141 (0.00201) | +0.617 (0.323) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Velázquez, M.; Medrano-Pérez, O.R.; Montero-Martínez, M.J.; Alcudia-Aguilar, A. Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Appl. Sci. 2021, 11, 8284. https://doi.org/10.3390/app11188284
Andrade-Velázquez M, Medrano-Pérez OR, Montero-Martínez MJ, Alcudia-Aguilar A. Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Applied Sciences. 2021; 11(18):8284. https://doi.org/10.3390/app11188284
Chicago/Turabian StyleAndrade-Velázquez, Mercedes, Ojilve Ramón Medrano-Pérez, Martín José Montero-Martínez, and Alejandro Alcudia-Aguilar. 2021. "Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean" Applied Sciences 11, no. 18: 8284. https://doi.org/10.3390/app11188284
APA StyleAndrade-Velázquez, M., Medrano-Pérez, O. R., Montero-Martínez, M. J., & Alcudia-Aguilar, A. (2021). Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Applied Sciences, 11(18), 8284. https://doi.org/10.3390/app11188284