The Effect of Regular Physical Activity on Muscle and Adipose Tissue in Premenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Physical Activity Assessment
2.4. Somatic Measurements
2.5. Statistics Analysis
3. Results
3.1. Sample Characteristics
3.2. Whole-Body Analysis
3.3. Segmental Analysis
3.3.1. Limb Symmetry Assessment
3.3.2. Segment Assessment
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mayo, X.; Liguori, G.; Iglesias-Soler, E.; Copeland, R.J.; Clavel San Emeterio, I.; Lowe, A.; Del Villar, F.; Jimenez, A. The Active Living Gender’s Gap Challenge: 2013-2017 Eurobarometers Physical Inactivity Data Show Constant Higher Prevalence in Women with No Progress towards Global Reduction Goals. BMC Public Health 2019, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 April 2021).
- Greendale, G.A.; Sternfeld, B.; Huang, M.H.; Han, W.; Karvonen-Gutierrez, C.; Ruppert, K.; Cauley, J.A.; Finkelstein, J.S.; Jiang, S.F.; Karlamangla, A.S. Changes in Body Composition and Weight during the Menopause Transition. JCI Insight 2019, 4, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kalinkovich, A.; Livshits, G. Sarcopenic Obesity or Obese Sarcopenia: A Cross Talk between Age-Associated Adipose Tissue and Skeletal Muscle Inflammation as a Main Mechanism of the Pathogenesis. Ageing Res. Rev. 2017, 35, 200–221. [Google Scholar] [CrossRef] [PubMed]
- Lynch, G.M.; Murphy, C.H.; Castro, E.D.M.; Roche, H.M. Inflammation and Metabolism: The Role of Adiposity in Sarcopenic Obesity. Proc. Nutr. Soc. 2020, 79, 435–447. [Google Scholar] [CrossRef]
- Hong, S.-H.; Choi, K.M. Molecular Sciences Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int. J. Mol. Sci. 2020, 21, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautmans, I.; Puyvelde, K.; Mets, T. Sarcopenia and Functional Decline: Pathophysiology, Prevention and Therapy. Acta Clin. Belg. 2009, 64, 303–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Delmonico, M.J.; Harris, T.B.; Lee, J.S.; Visser, M.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Newman, A.B. Alternative Definitions of Sarcopenia, Lower Extremity Performance, and Functional Impairment with Aging in Older Men and Women. J. Am. Geriatr. Soc. 2007, 55, 769–774. [Google Scholar] [CrossRef]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-Associated Changes in Skeletal Muscles and Their Effect on Mobility: An Operational Diagnosis of Sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef]
- Nascimento, C.M.; Ingles, M.; Salvador-Pascual, A.; Cominetti, M.R.; Gomez-Cabrera, M.C.; Viña, J. Sarcopenia, Frailty and Their Prevention by Exercise. Free Radic. Biol. Med. 2019, 132, 42–49. [Google Scholar] [CrossRef]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of Sarcopenia in the World: A Systematic Review and Meta- Analysis of General Population Studies. J. Diabetes Metab. Disord. 2017, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijlsma, A.Y.; Meskers, C.G.M.; Ling, C.H.Y.; Narici, M.; Kurrle, S.E.; Cameron, I.D.; Westendorp, R.G.J.; Maier, A.B. Defining Sarcopenia: The Impact of Different Diagnostic Criteria on the Prevalence of Sarcopenia in a Large Middle Aged Cohort. Age (Omaha) 2013, 35, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isabel Filippin, L.; Nunes de Oliveira Teixeira, V.; Pilz Monteiro da Silva, M.; Miraglia, F.; Silva da Silva, F. Sarcopenia: A Predictor of Mortality and the Need for Early Diagnosis and Intervention. Aging Clin. Exp. Res. 2015, 27, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Theou, O.; Stathokostas, L.; Roland, K.P.; Jakobi, J.M.; Patterson, C.; Vandervoort, A.A.; Jones, G.R. The Effectiveness of Exercise Interventions for the Management of Frailty: A Systematic Review. J. Aging Res. 2011, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, E.; Blair, S.N. Physical Activity and the Prevention of Cardiovascular Disease: From Evolution to Epidemiology. Prog. Cardiovasc. Dis. 2011, 53, 387–396. [Google Scholar] [CrossRef]
- Ng, S.W.; Popkin, B. Time Use and Physical Activity: A Shift Awa; Frommovement across the Globe. Obes. Rev. 2013, 13, 659–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keefe, J.H.; Vogel, R.; Lavie, C.J.; Cordain, L. Exercise Like a Hunter-Gatherer: A Prescription for Organic Physical Fitness. Prog. Cardiovasc. Dis. 2011, 53, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Fennell, C.; Peroutky, K.; Glickamn, E.L. Effects of Supervised Training Compared to Unsupervised Training on Physical Activity, Muscular Endurance, and Cardiovascular Parameters. MOJ Orthop. Rheumatol. 2016, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, T.; Hosmer, D.; Hosmer, T.; Venn, A.J.; Blizzard, C.L.; Granger, R.H.; Cochrane, J.A.; Blair, S.N.; Shaw, J.E.; Zimmet, P.Z.; et al. The Inverse Relationship between Number of Steps per Day and Obesity in a Population-Based Sample-the AusDiab Study. Int. J. Obes. 2007, 31, 797–804. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. WHO Guidelines on Physical Activity and Sedentary Behaviour, Web Annex, Evidence Profiles; WHO: Geneva, Switzerland, 2020; ISBN 978-92-4-001511-1. [Google Scholar]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide Trends in Insufficient Physical Activity from 2001 to 2016: A Pooled Analysis of 358 Population-Based Surveys with 1·9 Million Participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Middlekauff, M.; Lee, W.; Egger, M.J.; Nygaard, I.E.; Shaw, J.M. Physical Activity Patterns in Healthy Middle-Aged Women. J. Women Aging 2016, 28, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipryan, L.; Kutac, P.; Dostal, T.; Zimmermann, M.; Krajcigr, M.; Jandackova, V.; Sram, R.; Jandacka, D.; Hofmann, P. Regular Running in an Air-Polluted Environment: Physiological and Anthropometric Protocol for a Prospective Cohort Study (Healthy Aging in Industrial Environment Study—Program 4). BMJ Open 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Elavsky, S.; Jandačková, V.; Knapová, L.; Vašendová, V.; Sebera, M.; Kaštovská, B.; Blaschová, D.; Kühnová, J.; Cimler, R.; Vilímek, D.; et al. Physical Activity in an Air-Polluted Environment: Behavioral, Psychological and Neuroimaging Protocol for a Prospective Cohort Study (Healthy Aging in Industrial Environment Study—Program 4). BMC Public Health 2021, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jandacka, D.; Uchytil, J.; Zahradnik, D.; Farana, R.; Vilimek, D.; Skypala, J.; Urbaczka, J.; Plesek, J.; Motyka, A.; Blaschova, D.; et al. Running and Physical Activity in an Air-Polluted Environment: The Biomechanical and Musculoskeletal Protocol for a Prospective Cohort Study 4HAIE (Healthy Aging in Industrial Environment—Program 4). Int. J. Environ. Res. Public Health 2020, 17, 9142. [Google Scholar] [CrossRef]
- Godin, G.; Shephard, R. A Simple Method to Assess Exercise Behavior in the Community. Can. J. Appl. Sport Sci. 1985, 10, 141–146. [Google Scholar] [PubMed]
- Godin, G.; Jobin, J.; Bouillon, J. Assessment of Leisure-Time Exercise Behavior by Selfreport: A Concurrent Validity Study. Can. J. Public Health 1986, 77, 359–362. [Google Scholar] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; ISBN 0-12-179060-6. [Google Scholar]
- World Health Organisation. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO: Geneva, Switzerland, 2000; ISBN 92-4-120894-5. [Google Scholar]
- Eurostat. Body Mass Index (BMI) by Sex, Age and Country of Citizenship. Available online: https://ec.europa.eu/eurostat/databrowser/view/HLTH_EHIS_BM1C__custom_763770/default/table?lang=en (accessed on 20 April 2021).
- Czech Statistical Office. How Are the People with Poverty, Obesity or Sporting? Available online: https://www.czso.cz/csu/stoletistatistiky/jak-jsou-na-tom-cesi-s-chudobou-obezitou-ci-sportovanim (accessed on 25 April 2021).
- Kutáč, P.; Bunc, V.; Sigmund, M. Whole-Body Dual-Energy X-Ray Absorptiometry Demonstrates Better Reliability than Segmental Body Composition Analysis in College-Aged Students. PLoS ONE 2019, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Liberato, S.C.; Maple-Brown, L.; Bressan, J.; Hills, A.P. The Relationships between Body Composition and Cardiovascular Risk Factors in Young Australian Men. Nutr. J. 2013, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Miranda, V.P.N.; Dos Santos Amorim, P.R.; Bastos, R.R.; Canabrava, K.L.R.; Júnior, M.V.M.; Faria, F.R.; Do Carmo Castro Franceschini, S.; Do Carmo Gouveia Peluzio, M.; Priore, S.E. Association of Lifestyle and Body Composition on Risk Factors of Cardiometabolic Diseases and Biomarkers in Female Adolescents. Mediat. Inflamm. 2020, 2020. [Google Scholar] [CrossRef]
- Gába, A.; Přidalová, M. Age-Related Changes in Body Composition in a Sample of Czech Women Aged 18-89 Years: A Cross-Sectional Study. Eur. J. Nutr. 2014, 53, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haberka, M.; Stolarz-Skrzypek, K.; Biedroń, M.; Szóstak-Janiak, K.; Partyka, M.; Olszanecka-Glinianowicz, M.; Gasior, Z. Obesity, Visceral Fat, and Hypertension-Related Complications. Metab. Syndr. Relat. Disord. 2018, 16, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms Linking Obesity with Cardiovascular Disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef]
- Verboven, K.; Wouters, K.; Gaens, K.; Hansen, D.; Bijnen, M.; Wetzels, S.; Stehouwer, C.D.; Goossens, G.H.; Schalkwijk, C.G.; Blaak, E.E.; et al. Abdominal Subcutaneous and Visceral Adipocyte Size, Lipolysis and Inflammation Relate to Insulin Resistance in Male Obese Humans. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Monteiro, A.M.; Ferreira, G.; Duarte, H. Metabolic Activity in the Visceral and Subcutaneous Adipose Tissues by FDG-PET/CT in Obese Patients Avaliação Da Atividade Metabólica Do Tecido Adiposo Visceral e Subcutâneo Por FDG-PET/CT Em Doentes Obesos. Acta Med. Port. 2017, 30, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Brellenthin, A.G.; Thompson, P.D.; Sui, X.; Lee, I.M.; Lavie, C.J. Running as a Key Lifestyle Medicine for Longevity. Prog. Cardiovasc. Dis. 2017, 60, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Pedisic, Z.; Shrestha, N.; Kovalchik, S.; Stamatakis, E.; Liangruenrom, N.; Grgic, J.; Titze, S.; Biddle, S.J.H.; Bauman, A.E.; Oja, P. Is Running Associated with a Lower Risk of All-Cause, Cardiovascular and Cancer Mortality, and Is the More the Better? A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2020, 54, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Yang, H.Y.; Shun, S.C. Effect of Exercise Intervention Dosage on Reducing Visceral Adipose Tissue: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Int. J. Obes. 2021, 45, 982–997. [Google Scholar] [CrossRef] [PubMed]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and Sarcopenia: A Systematic Review and Meta-Analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Czech Statistical Office. Gender: Education. Available online: https://www.czso.cz/csu/gender/1-gender_vzdelani (accessed on 25 April 2021).
Variable | Group | |||
---|---|---|---|---|
Total (n = 136) | T1 (n = 47) | T2 (n = 45) | T3 (n = 44) | |
* LTEQ-M ± SD | 41.90 ± 23.06 | 18.81 ± 8.14 | 40.42 ± 4.26 | 68.09 ± 17.11 |
Min | 5 | 5 | 32 | 48 |
Max | 119 | 30 | 47 | 119 |
Variable | Total (n = 136) | T1 (n = 47) | T2 (n = 45) | T3 (n = 44) | |
---|---|---|---|---|---|
Age (years) | M ± SD 41.07 ± 2.77 | M ± SD 40.77 ± 2.60 | M ± SD 41.29 ± 2.81 | M ± SD 41.16 ± 2.93 | |
Marital status | n (%) | n (%) | n (%) | n (%) | |
Single | 10 (7%) | 7 (15%) | 2 (4%) | 1 (2%) | |
Married | 90 (66%) | 31 (66%) | 26 (58%) | 33 (75%) | |
Cohabitation | 13 (10%) | 4 (9%) | 8 (18%) | 1 (2%) | |
Divorced | 22 (16%) | 5 (11%) | 8 (18%) | 9 (21%) | |
Widow | 1 (0.7%) | 0 (0%) | 1 (2%) | 0 (0%) | |
Education | Trained, high school without school leaving certificate | 8 (6%) | 2 (4%) | 2 (4%) | 4 (9%) |
High school with school leaving certificate | 56 (41%) | 20 (43%) | 21 (47%) | 15 (34%) | |
Higher vocational | 7 (5%) | 0 (0%) | 4 (9%) | 3 (7%) | |
University | 65 (48%) | 25 (53%) | 18 (40%) | 22 (50%) | |
Economic situation of the family (as assessed by the participants) | Below average | 4 (3%) | 1 (2%) | 2 (4%) | 1 (2%) |
Average | 110 (81%) | 37 (79%) | 35 (78%) | 38 (91%) | |
Above average | 22 (16%) | 9 (19%) | 8 (18%) | 5 (7%) |
Parameters | T1 (n = 47) M ± SD | T2 (n = 45) M ± SD | T3 (n = 44) M ± SD |
---|---|---|---|
BH (cm) NS | 167.30 ± 6.23 | 168.85 ± 5.78 | 168.29 ± 6.39 |
BM (kg) * | 72.38 ± 13.44 | 66.28 ± 10.55 | 66.39 ± 9.20 |
BMI (kg/m2) * | 25.29 ± 4.59 | 22.60 ± 3.29 | 22.76 ± 2.60 |
BF (kg) * | 27.22 ± 8.88 | 21.24 ± 6.68 | 20.80 ± 5.51 |
BF (%) * | 36.81 ± 5.73 | 31.39 ± 5.28 | 30.92 ± 4.52 |
FFM (kg) NS | 45.16 ± 5.72 | 45.04 ± 4.92 | 45.59 ± 4.76 |
FFM (%) * | 63.19 ± 5.73 | 68.61 ± 5.28 | 69.08 ± 4.52 |
VFA (cm2) * | 70.35 ± 36.21 | 52.86 ± 31.79 | 49.64 ± 18.31 |
App. index (kg/m2) NS | 6.53 ± 0.79 | 6.45 ± 0.60 | 6.60 ± 0.57 |
Parameters | T1 vs. T2 | T1 vs. T3 | T2 vs. T3 | |||
---|---|---|---|---|---|---|
diff | d | diff | d | diff | d | |
BM (kg) | +6.10 * | 0.50 | +5.99 * | 0.52 | +0.23 ns | - |
BMI (kg/m2) | +2.69 ** | 0.67 | +2.53 ** | 0.67 | −0.07 ns | - |
BF (kg) | +5.98 *** | 0.76 | +6.42 *** | 0.86 | +0.58 ns | - |
BF (%) | +5.42 *** | 0.98 | +5.89 *** | 1.14 | +0.54 ns | - |
FFM (%) | −5. 42 *** | 0.98 | −5.89 *** | 1.14 | −0.54 ns | - |
VFA (cm2) | +17.49 * | 0.51 | +20.71 ** | 0.71 | +3.8 ns | - |
Group | ≤18:49 n (%) | 18.50–24.99 n (%) | 25.00–29.99 n (%) | 30.00–34.99 n (%) | ≥35.00 n (%) |
---|---|---|---|---|---|
T1 (n = 47) | 26 (55.3) | 13 (27.7) | 6 (12.8) | 2 (4.2) | |
T2 (n = 45) | 3 (6.7) | 34 (75.5) | 7 (15.6) | 1 (2.2) | |
T3 (n = 44) | 36 (81.8) | 8 (18.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutac, P.; Buzga, M.; Elavsky, S.; Bunc, V.; Jandacka, D.; Krajcigr, M. The Effect of Regular Physical Activity on Muscle and Adipose Tissue in Premenopausal Women. Appl. Sci. 2021, 11, 8655. https://doi.org/10.3390/app11188655
Kutac P, Buzga M, Elavsky S, Bunc V, Jandacka D, Krajcigr M. The Effect of Regular Physical Activity on Muscle and Adipose Tissue in Premenopausal Women. Applied Sciences. 2021; 11(18):8655. https://doi.org/10.3390/app11188655
Chicago/Turabian StyleKutac, Petr, Marek Buzga, Steriani Elavsky, Vaclav Bunc, Daniel Jandacka, and Miroslav Krajcigr. 2021. "The Effect of Regular Physical Activity on Muscle and Adipose Tissue in Premenopausal Women" Applied Sciences 11, no. 18: 8655. https://doi.org/10.3390/app11188655
APA StyleKutac, P., Buzga, M., Elavsky, S., Bunc, V., Jandacka, D., & Krajcigr, M. (2021). The Effect of Regular Physical Activity on Muscle and Adipose Tissue in Premenopausal Women. Applied Sciences, 11(18), 8655. https://doi.org/10.3390/app11188655