Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain
Abstract
:1. Introduction
2. Data and Calculations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, S.; Bartels, J. Geomagnetism; Oxford University Press: New York, NY, USA, 1940. [Google Scholar]
- Campbell, W. The regular geomagnetic-field variations during quiet solar conditions. In Geomagnetism; Jacobs, J.A., Ed.; Elsevier: New York, NY, USA, 1989; Volume 3. [Google Scholar]
- Richmond, A.D. Modeling the ionsphere wind dynamo: A review. PAGEOPH 1989, 131, 413–435. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Maute, A. Sq and EEJ—A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev. 2017, 206, 299–405. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M. Geomagnetic Sq current system. J. Geophys. Res. 1960, 65, 1437–1447. [Google Scholar] [CrossRef]
- Matsushita, S.; Xu, W. Equivalent ionospheric current systems representing solar daily variations of the polar geomagnetic field. J. Geophys. Res. 1982, 87, 8241–8254. [Google Scholar] [CrossRef]
- Chen, S.S.; Denardini, C.M.; Resende, L.C.A.; Chagas, R.A.J.; Moro, J.; da Silva, R.P.; Carmo, C.d.S.D.; Picanço, G.A.d.S. Evaluation of the Solar Quiet Reference Field (SQRF) model for space weather applications in the South America Magnetic Anomaly. Earth Planets Space 2021, 73, 61. [Google Scholar] [CrossRef]
- El Hawary, R.; Yumoto, K.; Yamazaki, Y.; Mahrous, A.; Ghamry, E.; Meloni, A.; Badi, K.; Kianji, G.; Uiso, C.B.S.; Mwiinga, N.; et al. Annual and semi-annual Sq variations at 96° MM MAGDAS I and II stations in Africa. Earth Planets Space 2012, 64, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Hibberd, F.H. The geomagnetic Sq variation—annual, semi-annual and solar cycle variations and ring current effects. J. Atmos. Terr. Phys. 1985, 47, 341–352. [Google Scholar] [CrossRef]
- Campbell, W. Annual and Semiannual Changes of the Quiet Daily Variations (Sq) in the Geomagnetic Field at North American Locations. J. Geophys. Res. 1982, 87, 785–796. [Google Scholar] [CrossRef]
- Di Mauro, D.; Regi, M.; Lepidi, S.; Del Corpo, A.; Dominici, G.; Bagiacchi, P.; Benedetti, G.; Cafarella, L. Geomagnetic Activity at Lampedusa Island: Characterization and Comparison with the Other Italian Observatories, Also in Response to Space Weather Events. Remote Sens. 2021, 13, 3111. [Google Scholar] [CrossRef]
- Patil, A.; Arora, B.R.; Rastogi, R.G. Seasonal variations in the intensity of Sq current system and its focus latitude over the Indian region. Indian J. Radio Space Phys. 1985, 14, 131–135. [Google Scholar]
- Stening, R. Variations in the strength of the Sq current system. Ann. Geophys. 1995, 13, 627–632. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Yumoto, K.; Uozumi, T.; Abe, S.; Cardinal, M.G.; McNamara, D.; Marshall, R.; Shevtsov, B.M.; Solovyev, S.I. Reexamination of the Sq-EEJ relationship based on extended magnetometer networks in the east Asian region. J. Geophys. Res. 2010, 115, A09319. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; et al. An empirical model of the quiet daily geomagnetic field variation. J. Geophys. Res. 2011, 116, A10312. [Google Scholar] [CrossRef]
- Matsushita, S. Seasonal and day-to-day changes of the central position of the S~ overhead current system. J. Geophys. Res. 1960, 65, 3835–3839. [Google Scholar] [CrossRef]
- Gupta, J.C. Movement of the Sq foci in 1958. PAGEOPH 1973, 110, 2076–2084. [Google Scholar] [CrossRef]
- Tarpley, J.D. Seasonal movement of the Sq Current foci and related effects in the equatorial electrojet. J. Atmos. Terr. Phys. 1973, 35, 1063–1071. [Google Scholar] [CrossRef]
- Schlapp, D.M. Day-to-day variability of the latitudes of the Sq foci. J. Atmos. Terr. Phys. 1976, 38, 573–577. [Google Scholar] [CrossRef]
- Rajaram, M. Determination of the latitude of Sq focus and its relation to electrojet variations. J. Atmos. Terr. Phys. 1984, 45, 573–578. [Google Scholar] [CrossRef]
- Kane, R.P. Variability of the Sq focus position in the South American continent. Proc. Indian Acad. Sci. 1990, 99, 405–412. [Google Scholar]
- Stening, R.; Reztsova, T.; Minh, L.H. Day-to-day changes in the latitudes of the foci of the Sq current system and their relation to equatorial electrojet strength. J. Geophys. Res. 2005, 110, A10308. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Richmond, A.D.; Maute, A.; Wu, Q.; Ortland, D.A.; Yoshikawa, A.; Adimula, I.A.; Rabiu, B.; Kunitake, M.; Tsugawa, T. Ground magnetic effects of the equatorial electrojet simulated by the TIE-GCM driven by TIMED satellite data. J. Geophys. Res. Space Phys. 2014, 119, 3150–3161. [Google Scholar] [CrossRef]
- Chen, G.; Xu, W.; Du, A.; Wu, Y.; Chen, B.; Liu, X. Statistical characteristics of the day-to-day variability in the geomagnetic Sq field. J. Geophys. Res. 2007, 112, A06320. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, H. A Treatise on Magnetism, General and Terrestrial; Longmans Green: London, UK, 1874. [Google Scholar]
- Howe, H.H. An anomaly of the magnetic daily variation at Honolulu. J. Geophys. Res. 1950, 55, 271–274. [Google Scholar] [CrossRef]
- Wulf, O.R. A possible effect of atmospheric circulation in the daily variation of the Earth’s magnetic field. Mon. Weather Rev. 1963, 91, 520–526. [Google Scholar] [CrossRef]
- Wulf, O.R. A possible effect of atmospheric circulation in the daily variation of the Earth’s magnetic field, II. Mon. Weather Rev. 1965, 93, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Chulliat, A.; Blanter, E.; Le Mouël, J.; Shnirman, M. On the seasonal asymmetry of the diurnal and semidiurnal geomagnetic variations. J. Geophys. Res. 2005, 110, A05301. [Google Scholar] [CrossRef]
- Falayi, E.O. Equinoctial Asymmetry of Horizontal Component of Solar Quiet Variation (SqH). Adv. Phys. Theor. Appl. 2014, 38, 22–29. [Google Scholar]
- Takeda, M. The correlation between the variation in ionospheric conductivity and that of the geomagnetic Sq field. J. Atmos. Sol. Terr. Phys. 2002, 64, 1617–1621. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Xu, W.; Li, W. UT-variability of the Sq dynamo current and its ground magnetic field reconstruction. Chin. J. Geophys. 1993, 36, 305–316. [Google Scholar]
- Hamid, N.S.A.; Liu, H.; Uozumi, T.; Yumoto, K.; Veenadhari, B.; Yoshikawa, A.; Sanchez, J.A. Relationship between the equatorial electrojet and global Sq currents at the dip equator region. Earth Planets Space 2014, 66, 146. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Kamide, Y. Decomposition of daily geomagnetic variation by using method of natural orthogonal component. J. Geophys. Res. 2004, 109, A05218. [Google Scholar] [CrossRef]
- Shiraki, M. Variation of focus latitude and intensity of overhead current system of Sq with the solar activity. Mem. Kakioka Magn. Obs. 1973, 15, 107–126. [Google Scholar]
- Olsen, N. The solar cycle variability of lunar and solar daily geomagnetic variations. Ann. Geophys. 1993, 11, 254–262. [Google Scholar]
- Torta, J.M.; Marsal, S.; Curto, J.J.; Gaya-Piqué, L.R. Behaviour of the quiet-day geomagnetic variation at Livingston Island and variability of the Sq focus position in the South American-Antarctic Peninsula region. Earth Planets Space 2010, 62, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xu, W.; Chen, G. Analysis of periodical characteristics of Sq index. Chi. J. Geophys. 2012, 55, 177–183. [Google Scholar] [CrossRef]
- Alfonsi, L.; Cesaroni, C.; Spogli, L.; Regi, M.; Paul, A.; Ray, S.; Lepidi, S.; Di Mauro, D.; Haralambous, H.; Oikonomou, C.; et al. Ionospheric disturbances over the Indian sector during 8 September 2017 geomagnetic storm: Plasma structuring and propagation. Space Weather 2021, 19, e2020SW002607. [Google Scholar] [CrossRef]
- Regi, M.; Del Corpo, A.; De Lauretis, M. The use of the empirical mode decomposition for the identification of mean field aligned reference frames. Ann. Geophys. 2016, 59, G0651:1–G0651:16. [Google Scholar]
- Laken, B.A.; Čalogović, J. Composite analysis with Monte Carlo methods: An example with cosmic rays and clouds. J. Space Weather Space Clim. 2013, 3, A29. [Google Scholar] [CrossRef]
- Vichare, G. Seasonal variation of the Sq focus position during 2006–2010. Adv. Space Res. 2017, 59, 542–556. [Google Scholar] [CrossRef]
- Takeda, M. Contribution of wind, conductivity, and geomagnetic main field to the variation in the geomagnetic Sq field. J. Geophys. Res. 2013, 118, 4516–4522. [Google Scholar] [CrossRef]
- Titheridge, J.E. The electron content of the southern mid-latitude ionosphere, 1965–1971. J. Atmos. Terr. Phys. 1973, 35, 981–1001. [Google Scholar] [CrossRef]
- Aruliah, A.L.; Farmer, A.D.; Fuller-Rowell, T.J.; Wild, M.N.; Hapgood, M.; Rees, D. An equinoctial asymmetry in the high-latitude thermosphere and ionosphere. J. Geophys. Res. 1996, 101, 15713–15722. [Google Scholar] [CrossRef]
- Balan, N.; Otsuka, Y.; Fukao, S.; Bailey, G.J. Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar. J. Geophys. Res. 1998, 103, 9481–9486. [Google Scholar] [CrossRef]
- Zhao, B.; Wan, W.; Liu, L.; Mao, T.; Ren, Z.; Wang, M.; Christensen, A.B. Features of annual and semiannual variations derived from the global ionospheric maps of total electron content. Ann. Geophys. 2007, 25, 2513–2527. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; He, M.; Yue, X.; Ning, B.; Wan, W. Ionosphere around equinoxes during low solar activity. J. Geophys. Res. 2010, 115, A09307. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Luan, X.; Wan, W.; Lei, J.; Ning, B. Seasonal behavior of equivalent winds over Wuhan derived from ionospheric data in 2000–2001. Adv. Space Res. 2003, 32, 1765–1770. [Google Scholar] [CrossRef]
- Kil, H.; Oh, S.-J.; Paxton, L.J.; Fang, T.-W. High-resolution vertical E × B drift model derived from ROCSAT-1 data. J. Geophys. Res. 2009, 114, A10314. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Liu, L.; Chen, Y.; Le, H. Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J. Geophys. Res. 2011, 116, A02308. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Xiong, J.; Liu, L. Simulated equinoctial asymmetry of the ionospheric vertical plasma drifts. J. Geophys. Res. 2012, 117, A01301. [Google Scholar] [CrossRef] [Green Version]
- Campbell, W.H.; Schiffmacher, E.R.; Kroehl, H.W. Global quiet day field variation model WDCA/SQ1. Eos Trans. AGU 1989, 70, 66–74. [Google Scholar] [CrossRef]
- Xu, W.-Y.; Li, W.-D. Anomalous characteristics of Sq in east Asia. Chin. J. Space Sci. 1994, 15, 134–143. [Google Scholar]
- Pedatella, N.M.; Forbes, J.M.; Richmond, A.D. Seasonal and longitudinal variations of the solar quiet (Sq) current system during solar minimum determined by CHAMP satellite magnetic field observations. J. Geophys. Res. 2011, 116, A04317. [Google Scholar] [CrossRef] [Green Version]
- Sager, P.L.; Huang, T.S. Longitudinal dependence of the daily geomagnetic variation during quiet time. J. Geophys. Res. 2002, 107, A111397. [Google Scholar] [CrossRef] [Green Version]
Site | Geographic Coordinates | Geomagnetic Coordinates | Time Coverage |
---|---|---|---|
BMT | 40.3° N, 116.2° E | 29.9°, 186.8° | 1996–2013 |
LZH | 36.1° N, 103.9° E | 25.7°, 175.9° | 1980, 1986, 1989–1992, 1995, 1997–2011 |
CDP | 31.0° N, 103.7° E | 20.6°, 175.7° | 1995–2002, 2005–2007 |
WHN | 30.5° N, 114.6° E | 20.1°, 185.62° | 1980, 1995–2002, 2005–2007 |
GZH | 23.1° N, 113.3° E | 12.7°, 184.6° | 1960–1993, 2003–2009 |
MUT | 14.4° N, 121.0° E | 4.2°, 192.2° | 1957–1959, 1963–1972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, L.; Ren, Z. Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain. Appl. Sci. 2021, 11, 9150. https://doi.org/10.3390/app11199150
Wu Y, Liu L, Ren Z. Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain. Applied Sciences. 2021; 11(19):9150. https://doi.org/10.3390/app11199150
Chicago/Turabian StyleWu, Yingyan, Libo Liu, and Zhipeng Ren. 2021. "Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain" Applied Sciences 11, no. 19: 9150. https://doi.org/10.3390/app11199150
APA StyleWu, Y., Liu, L., & Ren, Z. (2021). Equinoctial Asymmetry in Solar Quiet Fields along the 120° E Meridian Chain. Applied Sciences, 11(19), 9150. https://doi.org/10.3390/app11199150