Temperature Changes in Composite Materials during Photopolymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composites
2.2. Light Curing Unit
2.3. Temperature Measurement
2.4. Flexural Strength Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Short polymerization durations lead to lower temperature rise values, while extended polymerization durations increase the values to a critical temperature for pulp damage.
- The temperature rise was determined by polymerization durations rather than by the exposure mode used.
- The temperature rise varied according to the materials used.
- Sufficient flexural strength was obtained for all polymerization modes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kopperud, S.E.; Rukke, H.V.; Kopperud, H.M.; Bruzell, E.M. Light curing procedures–performance, knowledge level and safety awareness among dentists. J. Dent. 2017, 58, 67–73. [Google Scholar] [CrossRef]
- Suliman, A.A.; Abdo, A.A.; Elmasmari, H.A. Training and experience effect on light-curing efficiency by dental practitioners: Training and experience effect on light-curing. J. Dent. Educ. 2020, 84, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Zach, L.; Cohen, G. Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Gross, D.J.; Dávila-Sánchez, A.; Runnacles, P.; Zarpellon, D.C.; Kiratcz, F.; Campagnoli, E.B.; Alegría-Acevedo, L.F.; Coelho, U.; Rueggeberg, F.A.; Arrais, C.A.G. In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having Class V preparations after exposure to Polywave® LED light curing units. Dent. Mater. 2020, 36, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Runnacles, P.; Arrais, C.A.G.; Pochapski, M.T.; dos Santos, F.A.; Coelho, U.; Gomes, J.C.; De Goes, M.F.; Gomes, O.M.M.; Rueggeberg, F.A. In vivo temperature rise in anesthetized human pulp during exposure to a polywave LED light curing unit. Dent. Mater. 2015, 31, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Garrocho-Rangel, A.; Esparza-Villalpando, V.; Pozos-Guillen, A. Outcomes of direct pulp capping in vital primary teeth with cariously and non-cariously exposed pulp: A systematic review. Int. J. Paediatr. Dent. 2020, 30, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Cervino, G.; Laino, L.; D’Amico, C.; Russo, D.; Nucci, L.; Amoroso, G.; Gorassini, F.; Tepedino, M.; Terranova, A.; Gambino, D.; et al. Mineral Trioxide Aggregate Applications in Endodontics: A Review. Eur. J. Dent. 2020, 14, 683–691. [Google Scholar] [CrossRef]
- Bjørndal, L.; Simon, S.; Tomson, P.L.; Duncan, H.F. Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 949–973. [Google Scholar] [CrossRef]
- Peutzfeldt, A.; Asmussen, E. Modulus of resilience as predictor for clinical wear of restorative resins. Dent. Mater. 1992, 8, 146–148. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E.C. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent. Mater. 2011, 27, 598–607. [Google Scholar] [CrossRef]
- Ilie, N.; Stark, K. Effect of different curing protocols on the mechanical properties of low-viscosity bulk-fill composites. Clin. Oral Investig. 2015, 19, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Aljosa, I.; Tijana, L.; Larisa, B.; Marko, V. Influence of Light-curing Mode on the Mechanical Properties of Dental Resin Nanocomposites. Procedia Eng. 2014, 69, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Catelan, A.; Santo, M.R.d.E.; Menegazzo, L.M.; Moraes, J.C.S.; dos Santos, P.H. Effect of light curing modes on mechanical properties of direct and indirect composites. Acta Odontol. Scand. 2013, 71, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Akiba, S.; Takamizawa, T.; Tsujimoto, A.; Moritake, N.; Ishii, R.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Influence of different curing modes on flexural properties, fracture toughness, and wear behavior of dual-cure provisional resin-based composites. Dent. Mater. J. 2019, 38, 728–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajaj, R.; Yousef, M.; Abo El Naga, A. Effect of different curing modes on the degree of conversion and the microhardness of different composite restorations. Dent Hypotheses 2015, 6, 109. [Google Scholar] [CrossRef]
- Khaksaran, N.K.; Kashi, T.J.; Rakhshan, V.; Zeynolabedin, Z.S.; Bagheri, H. Kinetics of pulpal temperature rise during light curing of 6 bonding agents from different generations, using light emitting diode and quartz-tungsten-halogen units: An in-vitro simulation. Dent. Res. J. (Isfahan) 2015, 12, 173–180. [Google Scholar]
- Jo, S.-A.; Lee, C.-H.; Kim, M.-J.; Ferracane, J.; Lee, I.-B. Effect of pulse-width-modulated LED light on the temperature change of composite in tooth cavities. Dent. Mater. 2019, 35, 554–563. [Google Scholar] [CrossRef]
- Braga, S.; Oliveira, L.; Ribeiro, M.; Vilela, A.; da Silva, G.; Price, R.; Soares, C. Effect of Simulated Pulpal Microcirculation on Temperature When Light Curing Bulk Fill Composites. Oper. Dent. 2019, 44, 289–301. [Google Scholar] [CrossRef]
- Kim, R.J.-Y.; Lee, I.-B.; Yoo, J.-Y.; Park, S.-J.; Kim, S.-Y.; Yi, Y.-A.; Hwang, J.-Y.; Seo, D.-G. Real-Time Analysis of Temperature Changes in Composite Increments and Pulp Chamber during Photopolymerization. BioMed Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hubbezoglu, I.; Dogan, A.; Dogan, O.M.; Bolayir, G.; Bek, B. Effects of Light Curing Modes and Resin Composites on Temperature Rise under Human Dentin: An in vitro Study. Dent. Mater. J. 2008, 27, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Schneider, L.F.; Consani, S.; Correr-Sobrinho, L.; Correr, A.B.; Sinhoreti, M.A. Halogen and LED light curing of composite: Temperature increase and Knoop hardness. Clin. Oral Investig. 2006, 10, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Guenka Palma-Dibb, R.; Savaris, C.; Alexandra Chinelatti, M.; Augusto de Lima, F.; Bachmann, L.; Jendiroba Faraoni, J. Composite Photopolymerization: Temperature Increase According to Light Source and Dentin Thickness. JDOI 2016, 1, 11–19. [Google Scholar] [CrossRef]
- Santini, A.; Watterson, C.; Miletic, V. Temperature Rise Within the Pulp Chamber During Composite Resin Polymerisation Using Three Different Light Sources. TODENTJ 2008, 2, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Bağiş, B.; Bagis, Y.; Ertas, E.; Ustaomer, S. Comparison of the Heat Generation of Light Curing Units. J. Contemp. Dent. Pract. 2008, 9, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Pieniak, D.; Niewczas, A.M.; Walczak, M.; Zamościńska, J. Influence of photopolymerization parameters on the mechanical properties of polymer-ceramic composites applied in the conservative dentistry. Acta Bioeng. Biomech. 2014, 16, 29–35. [Google Scholar] [CrossRef]
- Da Silva, E.M.; Poskus, L.T.; Guimarães, J.G.A. Influence of Light-polymerization Modes on the Degree of Conversion and Mechanical Properties of Resin Composites: A Comparative Analysis Between a Hybrid and a Nanofilled Composite. Oper. Dent. 2008, 33, 287–293. [Google Scholar] [CrossRef]
- Witzel, M.F.; Calheiros, F.C.; Gonçalves, F.; Kawano, Y.; Braga, R.R. Influence of photoactivation method on conversion, mechanical properties, degradation in ethanol and contraction stress of resin-based materials. J. Dent. 2005, 33, 773–779. [Google Scholar] [CrossRef]
- Calheiros, F.; Kawano, Y.; Stansbury, J.; Braga, R. Influence of radiant exposure on contraction stress, degree of conversion and mechanical properties of resin composites. Dent. Mater. 2006, 22, 799–803. [Google Scholar] [CrossRef]
Material | Manufacturer | Shade | Type | Filler Content % (w/w) | Filler Type | Particle Size | Matrix |
---|---|---|---|---|---|---|---|
Boston | Arkona LFS, Nasutów, Poland | A2 | nano-hybrid | 78% | barium-aluminium-silicon glass, fumed silica, titanium dioxide | 15 nm–2000 nm | Bis-GMA, UDMA, Bis-EMA, TEGDMA |
Grandioso | Voco, Cuxhaven, Germany | A2 | nano-hybrid | 89% | glass ceramic filler; silicon dioxide nanoparticles | 60% of paticles: 20–40 nm | Bis-GMA, Bis-EMA, TEGDMA |
Filtek Z550 | 3M ESPE, St Paul, MN, USA | A2 | nano-hybrid | 82% | surface modified zirconia/silica filler, non-agglomerated/non-aggregated surface-modified silica particles | 20–3000 nm | Bis-GMA, UDMA, Bis-EMA, PEGDMA, TEGDMA |
Essentia | GC Corporation, Tokyo, Japan | Medium Dentin | micro-hybrid | 81% | prepolymerized fillers, barium glass, fumed silica | no data | Bis-GMA, UDMA Bis-MEPP, Bis-EMA, TEGDMA |
Essentia | GC Corporation, Tokyo, Japan | Universal | micro-hybrid | 81% | prepolymerized fillers, barium glass, fumed silica | no data | Bis-GMA, UDMA Bis-MEPP, Bis-EMA, TEGDMA |
Polofil Supra | Voco, Cuxhaven, Germany | A2 | micro-hybrid | 76.50% | Sintraglass multifillers | 50–2000 nm | Bis-GMA, UDMA, TEGDMA, HEMA |
Model | Manufacturer | Wavelength Range | Central Wavelength | Intensity | Fast-Cure Mode | Pulse-Cure Mode | Step-Cure Mode |
---|---|---|---|---|---|---|---|
MINI LED III Supercharged | Acteon Group (Merignac, France) | 420–480 nm | 455–465 nm | 2000 mW/cm2 ± 10% for an active fiber diameter of 7.5 mm | Full power for 3/5/10 s | 5/10 shots of 1 s (full power with emission of 5/10 successive one second flashes with a rest of period of 250 ms between each flash) | 6 s progressively and 3 s at full power |
Total energy: 3 s–6 J/cm2; 5 s–10 J/cm2; 10 s–20J/cm2; 20 s–40 J/cm2 | Total energy: 5 shots–10 J/cm2; 10 shots–20 J/cm2 | Total energy: 12 J/cm2 |
Fast-Cure 3 s | Fast-Cure 5 s | Fast-Cure 10 s | Fast-Cure 20 s (2 × 10 s) | Pulse-Cure 5 s | Pulse-Cure 10 s | Step-Cure 9 s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T0 | T1 | T0 | T1 | T0 | T1 | T0 | T1 | T0 | T1 | T0 | T1 | |
BOSTON | 28.4 (0.3) | 36.0 (0.4) | 28.3 (0.4) | 41.5 (0.6) | 28.8 (0.2) | 45.7 (0.9) | 28.9 (0.3) | 46.7 (2.1) | 29.3 (0.1) | 42.4 (1.8) | 29.1 (0.2) | 44.8 (1.0) | 29.2 (0.1) | 45.7 (2.7) |
GRANDIOSO | 28.6 (0.4) | 38.6 (0.8) | 28.4 (0.3) | 42.3 (1.6) | 29.0 (0.4) | 41.8 (1.4) | 29.5 (0.1) | 42.8 (0.6) | 29.6 (0.2) | 43.4 (1.3) | 29.7 (0.1) | 44.5 (2.0) | 29.8 (0.1) | 44.8 (0.4) |
FILTEK Z550 | 29.5 (0.1) | 41.6 (1.6) | 29.7 (0.3) | 48.0 (2.5) | 29.8 (0.1) | 47.3 (1.4) | 29.9 (0.1) | 47.7 (1.8) | 29.0 (0.1) | 44.5 (1.3) | 29.8 (0.1) | 47.4 (1.8) | 29.1 (0.8) | 47.2 (1.1) |
ESSENTIA MEDIUM DENTIN | 29.0 (0.1) | 36.3 (1.0) | 29.6 (0.2) | 42.8 (1.6) | 29.7 (0.1) | 45.2 (1.3) | 30 (0.5) | 45.3 (0.7) | 29.9 (0.1) | 43.9 (2.1) | 29.9 (0.2) | 43.3 (0.6) | 29.3 (0.3) | 46.1 (1.8) |
ESSENTIA UNIVERSAL | 29.0 (0.2) | 41.2 (0.3) | 28.6 (0.1) | 42.6 (2.1) | 28.7 (0.2) | 43.7 (0.1) | 29.3 (0.3) | 46.5 (0.7) | 29.5 (0.1) | 43.3 (0.6) | 29.5 (0.3) | 44.6 (1.8) | 29.6 (0.2) | 43.8 (2.6) |
POLOFIL SUPRA | 28.5 (0.2) | 41.1 (0.3) | 29.0 (0.2) | 46 (1.5) | 29.2 (0.2) | 47.3 (0.4) | 29.5 (0.1) | 46.7 (1.1) | 29.4 (0.2) | 44.6 (2.4) | 29.4 (0.1) | 45.9 (0.8) | 29.6 (0.2) | 45.5 (0.5) |
TOTAL | 28.8 (0.45) | 39.0 (2.7) a | 28.9 (0.6) | 43.6 (3.0) a | 29.2 (0.5) | 45.0 (2.3) b | 29.4 (0.4) | 45.8 (2.0) b | 29.6 (0.2) | 43.3 (1.7) b | 29.6 (0.3) | 45.0 (1.9) b | 29.4 (0.4) | 45.2 (1.9) b |
Response: dt | |||||
---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
Filler | 1 | 52.00 | 52.001 | 2.2404 | 0.1371 |
Polymerization time | 6 | 66.54 | 11.090 | 1.4778 | 0.3237 |
Residuals | 118 | 2738.89 | 23.211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalewski, L.; Szalewska, M.; Jarosz, P.; Woś, M.; Szymańska, J. Temperature Changes in Composite Materials during Photopolymerization. Appl. Sci. 2021, 11, 474. https://doi.org/10.3390/app11020474
Szalewski L, Szalewska M, Jarosz P, Woś M, Szymańska J. Temperature Changes in Composite Materials during Photopolymerization. Applied Sciences. 2021; 11(2):474. https://doi.org/10.3390/app11020474
Chicago/Turabian StyleSzalewski, Leszek, Magdalena Szalewska, Paweł Jarosz, Michał Woś, and Jolanta Szymańska. 2021. "Temperature Changes in Composite Materials during Photopolymerization" Applied Sciences 11, no. 2: 474. https://doi.org/10.3390/app11020474
APA StyleSzalewski, L., Szalewska, M., Jarosz, P., Woś, M., & Szymańska, J. (2021). Temperature Changes in Composite Materials during Photopolymerization. Applied Sciences, 11(2), 474. https://doi.org/10.3390/app11020474