Influence of Water Addition on the Latent Heat Degradation of Sodium Acetate Trihydrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Macro-Encapsulated Sodium Acetate Trihydrate Samples
- A reference sample (SAT60%) with a raw fraction of 60.3 wt.% of for a comparison with the data from the literature.
- A second sample (SAT58%) where water was added. In addition to a limitation of aging, this concentration was expected to bring stability regarding the supercooling phenomenon [11].
2.2. Experimental Set-Up Description
2.3. Data Analysis
3. Aging Study of Sodium Acetate Trihydrate
3.1. Experimental Validation of the Empirical Equations
3.2. The Initial Drop of Latent Heat during Preliminary Cycles
3.3. Study of the Raw Material (SAT60%)
3.4. Resistance to the Aging of a Sample Having Additional Water
4. Discussion on the Visual Aspect of the Samples
- 11.5 cm over a total of 20 cm (57%) in the SAT60% that underwent a maximal temperature (Tmax) of 70 °C (35 cycles);
- 9 cm over a total of 20 cm (45%) in the SAT60% that underwent a Tmax of 80 °C (83 cycles);
- 11 cm over a total of 20 cm (55%) for the SAT58% after 41 cycles until 70 °C and 10 cycles until 80 °C (52 cycles).
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Name | Symbol | Unit |
Sodium Acetate Trihydrate | SAT | |
Latent Heat | J·m−3 | |
Mass | kg | |
Specific Heat Capacity | J·kg−1·K−1 | |
Surface | m2 | |
Temperature | K | |
Melting Temperature | K | |
Mass Fraction of Sodium Acetate () | - | |
Heat Flux | W·m−2 | |
Subscript | ||
Related to Solid | ||
Related to Liquid |
References
- Systems & Components. Available online: http://comtes-storage.eu/publications/presentations/development-line-c/systems-components/ (accessed on 3 September 2018).
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials Used as PCM in Thermal Energy Storage in Buildings: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Beaupere, N.; Soupremanien, U.; Zalewski, L. Nucleation Triggering Methods in Supercooled Phase Change Materials (PCM), a Review. Thermochim. Acta 2018, 670, 184–201. [Google Scholar] [CrossRef]
- Wada, T.; Kimura, F.; Matsuo, Y. Studies on Salt Hydrates for Latent Heat Storage. IV. Crystallization in the Binary System CH3CO2Na–H2O. Bull. Chem. Soc. Jpn. 1983, 56, 3827–3829. [Google Scholar] [CrossRef] [Green Version]
- Beaupere, N.; Soupremanien, U.; Zalewski, L. Experimental Measurements of the Residual Solidification Duration of a Supercooled Sodium Acetate Trihydrate. Int. J. Therm. Sci. 2020, 158, 106544. [Google Scholar] [CrossRef]
- Mazzeo, D.; Oliveti, G.; de Gracia, A.; Coma, J.; Solé, A.; Cabeza, L.F. Experimental Validation of the Exact Analytical Solution to the Steady Periodic Heat Transfer Problem in a PCM Layer. Energy 2017, 140, 1131–1147. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, D.; Oliveti, G. Thermal Field and Heat Storage in a Cyclic Phase Change Process Caused by Several Moving Melting and Solidification Interfaces in the Layer. Int. J. Therm. Sci. 2018, 129, 462–488. [Google Scholar] [CrossRef]
- Wada, T.; Yamamoto, R.; Matsuo, Y. Heat Storage Capacity of Sodium Acetate Trihydrate during Thermal Cycling. Sol. Energy 1984, 33, 373–375. [Google Scholar] [CrossRef]
- Kong, W.; Dannemand, M.; Brinkø Berg, J.; Fan, J.; Englmair, G.; Dragsted, J.; Furbo, S. Experimental Investigations on Phase Separation for Different Heights of Sodium Acetate Water Mixtures under Different Conditions. Appl. Therm. Eng. 2019, 148, 796–805. [Google Scholar] [CrossRef]
- Pálffy, E.G.; Prépostffy, E.; Zöld, A.; Bajnóczy, G. Thermal Properties of a Heat Storage Device Containing Sodium Acetate Trihydrate. Period. Polytech. Chem. Eng. 1995, 39, 129–135. [Google Scholar]
- Kong, W.; Dannemand, M.; Johansen, J.B.; Fan, J.; Dragsted, J.; Englmair, G.; Furbo, S. Experimental Investigations on Heat Content of Supercooled Sodium Acetate Trihydrate by a Simple Heat Loss Method. Sol. Energy 2016, 139, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Dannemand, M.; Johansen, J.B.; Fan, J.; Dragsted, J.; Furbo, S. Ageing Stability of Sodium Acetate Trihydrate with and Without Additives for Seasonal Heat Storage. In Proceedings of the ISES Solar World Congress 2015, Daegu, Korea, 8–12 November 2015; International Solar Energy Society: Daegu, Korea, 2016; pp. 1–10. [Google Scholar]
- Furbo, S. Heat Storage with an Incongruently Melting Salt Hydrate as Storage Medium Based on the Extra Water Principle. In Thermal Storage of Solar Energy; Springer: Dordrecht, The Netherlands, 1981; pp. 135–145. ISBN 978-94-009-8304-5. [Google Scholar]
- Dannemand, M.; Dragsted, J.; Fan, J.; Johansen, J.B.; Kong, W.; Furbo, S. Experimental Investigations on Prototype Heat Storage Units Utilizing Stable Supercooling of Sodium Acetate Trihydrate Mixtures. Appl. Energy 2016, 169, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Dannemand, M.; Kong, W.; Fan, J.; Johansen, J.B.; Furbo, S. Laboratory Test of a Prototype Heat Storage Module Based on Stable Supercooling of Sodium Acetate Trihydrate. Energy Procedia 2015, 70, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Dannemand, M.; Johansen, J.B.; Kong, W.; Furbo, S. Experimental Investigations on Cylindrical Latent Heat Storage Units with Sodium Acetate Trihydrate Composites Utilizing Supercooling. Appl. Energy 2016, 177, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Zalewski, L.; Franquet, E.; Gibout, S.; Tittelein, P.; Defer, D. Efficient Characterization of Macroscopic Composite Cement Mortars with Various Contents of Phase Change Material. Appl. Sci. 2019, 9, 1104. [Google Scholar] [CrossRef] [Green Version]
- Desgrosseilliers, L. Design and Evaluation of a Modular, Supercooling Phase Change Heat Storage Device for Indoor Heating. Ph.D. Thesis, Université Dalhousie, Halifax, NS, Canada, 2017. [Google Scholar]
- Dannemand, M. Compact Seasonal PCM Heat Storage for Solar Heating Systems. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2015. [Google Scholar]
- Ferrer, G.; Solé, A.; Barreneche, C.; Martorell, I.; Cabeza, L.F. Review on the Methodology Used in Thermal Stability Characterization of Phase Change Materials. Renew. Sustain. Energy Rev. 2015, 50, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Yehya, A. Contribution to the Experimental and Numerical Characterization of Phase-Change Materials: Consideration of Convection, Supercooling, and Soluble Impurities. Ph.D. Thesis, Université d’Artois, Arras, France, 2015. [Google Scholar]
- Beaupère, N. Pilotage de La Libération de Chaleur et Étude Du Vieillissement de Matériaux à Changement de Phase. Ph.D. Thesis, Université d’Artois, Arras, France, 2019. [Google Scholar]
- Green, W.F. The “Melting-Point” of Hydrated Sodium Acetate: Solubility Curves. J. Phys. Chem. 1907, 12, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Johansen, J.B.; Dannemand, M.; Kong, W.; Fan, J.; Dragsted, J.; Furbo, S. Thermal Conductivity Enhancement of Sodium Acetate Trihydrate by Adding Graphite Powder and the Effect on Stability of Supercooling. Energy Procedia 2015, 70, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Araki, N.; Futamura, M.; Makino, A.; Shibata, H. Measurements of Thermophysical Properties of Sodium Acetate Hydrate. Int. J. Thermophys. 1995, 16, 1455–1466. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Roca, J.; Nogués, M.; Mehling, H.; Hiebler, S. Immersion Corrosion Tests on Metal-Salt Hydrate Pairs Used for Latent Heat Storage in the 48 to 58°C Temperature Range. Mater. Corros. 2002, 53, 902–907. [Google Scholar] [CrossRef]
- Efremov, V.A.; Endeladze, N.O.; Agre, V.M.; Trunov, V.K. Refinement of the Crystal Structure of Sodium Acetate Trihydrate. J. Struct. Chem. 1986, 27, 498–501. [Google Scholar] [CrossRef]
- Duquesne, M.; Palomo Del Barrio, E.; Godin, A. Nucleation Triggering of Highly Undercooled Xylitol Using an Air Lift Reactor for Seasonal Thermal Energy Storage. Appl. Sci. 2019, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Munakata, T.; Nagata, S. Electrical Initiation of Solidification and Preservation of Supercooled State for Sodium Acetate Trihydrate. In Proceedings of the 14th International Heat Transfer Conference, Washington, DC, USA, 8–13 August 2010; ASME: Washington, DC, USA, 2010; Volume 7, pp. 383–388. [Google Scholar]
- Dannemand, M.; Delgado, M.; Lazaro, A.; Penalosa, C.; Gundlach, C.; Trinderup, C.; Johansen, J.B.; Moser, C.; Schranzhofer, H.; Furbo, S. Porosity and Density Measurements of Sodium Acetate Trihydrate for Thermal Energy Storage. Appl. Therm. Eng. 2018, 131, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Guion, J.; Teisseire, M. Nucleation of Sodium Acetate Trihydrate in Thermal Heat Storage Cycles. Sol. Energy 1991, 46, 97–100. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Wada, T. Study of Sodium Acetate Trihydrate for Latent Heat Storage. Ph.D. Thesis, Osaka University, Osaka, Japan, 1985. [Google Scholar]
A (J·kg−1·°C−1) | B (J·kg−1·°C−2) | C (J·kg−1·°C−1) | D (J·kg−1·°C−2) | |
---|---|---|---|---|
3367 | −10.74 | −2412 | 24.67 | |
4091 | 5.8 | −2274 | −2.52 |
SAT58% | Number of Experiments | SAT60% | Number of Experiments | |
---|---|---|---|---|
Mean L value (J·g−1) | 214 ± 3 | 5 | 253 ± 2 | 3 |
Difference with Equation (3) (%) | 2 | 1 | ||
Mean value (20; 28 °C, J·kg−1·°C−1) | 2021 ± 19 | 4 | ||
Difference with Equation (1) (%) | 0.2 | |||
Mean value (63; 70 °C, J·kg−1·°C−1) | 3260 ± 35 | 4 | ||
Difference with Equation (1) (%) | 9.3 | |||
Mean value (5; 70 °C, J·kg−1·°C−1) | 3199 ± 15 | 10 | ||
Difference with Equation (1) (%) | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaupere, N.; Soupremanien, U.; Zalewski, L. Influence of Water Addition on the Latent Heat Degradation of Sodium Acetate Trihydrate. Appl. Sci. 2021, 11, 484. https://doi.org/10.3390/app11020484
Beaupere N, Soupremanien U, Zalewski L. Influence of Water Addition on the Latent Heat Degradation of Sodium Acetate Trihydrate. Applied Sciences. 2021; 11(2):484. https://doi.org/10.3390/app11020484
Chicago/Turabian StyleBeaupere, Noe, Ulrich Soupremanien, and Laurent Zalewski. 2021. "Influence of Water Addition on the Latent Heat Degradation of Sodium Acetate Trihydrate" Applied Sciences 11, no. 2: 484. https://doi.org/10.3390/app11020484
APA StyleBeaupere, N., Soupremanien, U., & Zalewski, L. (2021). Influence of Water Addition on the Latent Heat Degradation of Sodium Acetate Trihydrate. Applied Sciences, 11(2), 484. https://doi.org/10.3390/app11020484