Comparison of Hamstrings and Quadriceps Muscle Activation in Male and Female Professional Soccer Players
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Participants
2.3. Study Design
2.4. Procedure
2.5. Data Processing
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. H:Q Ratio
4.2. VM:VL Ratio
4.3. Intragroup Muscular Pattern
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Nouni-Garcia, R.; Asensio-Garcia, M.R.; Orozco-Beltran, D.; Lopez-Pineda, A.; Gil-Guillen, V.F.; Quesada, J.A.; Bernabeu Casas, R.C.; Carratala-Munuera, C. The FIFA 11 programme reduces the costs associated with ankle and hamstring injuries in amateur Spanish football players: A retrospective cohort study. Eur. J. Sport Sci. 2019, 19, 1150–1156. [Google Scholar] [CrossRef]
- Askling, C.; Karlsson, J.; Thorstensson, A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand. J. Med. Sci. Sports 2003, 13, 244–250. [Google Scholar] [CrossRef]
- Brockett, C.; Morgan, D.; Proske, U. Predicting hamstring strain injury in elite athletes. Med. Sci. Sports Exerc. 2004, 36, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.-M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Hagglund, W. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Intrinsic risk factors for hamstring injuries among male soccer players: A prospective cohort study. Am. J. Sports Med. 2010, 38, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- McCall, A.; Carling, C.; Davison, M.; Nedelec, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015, 49, 583–589. [Google Scholar] [CrossRef]
- Navarro, E.; Chorro, D.; Torres, G.; García, C.; Navandar, A.; Veiga, S. A review of risk factors for hamstring injury in soccer: A biomechanical approach. Eur. J. Hum. Mov. 2015, 34, 52–74. [Google Scholar]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: A prospective study of 100 professional players. Br. J. Sports Med. 2011, 45, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Cameron, M.; Adams, R.; Maher, C. Motor control and strength as predictors of hamstring injury in elite players of Australian football. Phys. Ther. Sport 2003, 4, 159–166. [Google Scholar] [CrossRef]
- Greco, C.; Silva, W.L.; Camarda, S.R.; Denadai, B.S. Fatigue and rapid hamstring/quadriceps force capacity in professional soccer players. Clin. Physiol. Funct. Imaging 2013, 33, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Greig, M.; Siegler, J.C. Soccer-specific fatigue and eccentric hamstrings muscle strength. J. Athl. Train. 2009, 44, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Small, K.; McNaughton, L.; Greig, M.; Lovell, R. Effect of timing of eccentric hamstring strengthening exercises during soccer training: Implications for muscle fatigability. J. Strength Condit. Res. 2009, 23, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Larruskain, J.; Lekue, J.A.; Diaz, N.; Odriozola, A.; Gil, S.M. A comparison of injuries in elite male and female football players: A 5-Season prospective study. Scand. J. Med. Sci. Sports 2017, 28, 237–245. [Google Scholar] [CrossRef]
- Arendt, E.A.; Agel, J.; Dick, R.J. Anterior cruciate ligament injury patterns among collegiate men and women. J. Athl. Train. 1999, 34, 86. [Google Scholar]
- Waldén, M.; Hägglund, M.; Werner, J.; Ekstrand, J. The epidemiology of anterior cruciate ligament injury in football (soccer): A review of the literature from a gender-related perspective. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 3–10. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef]
- Boling, M.C.; Padua, D.A.; Marshall, S.W.; Guskiewicz, K.; Pyne, S.; Beutler, A. A Prospective Investigation of Biomechanical Risk Factors for Patellofemoral Pain Syndrome:The Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) Cohort. Am. J. Sports Med. 2009, 37, 2108–2116. [Google Scholar] [CrossRef] [Green Version]
- Kaeding, C.C.; Pedroza, A.D.; Reinke, E.K.; Huston, L.J.; Spindler, K.P. Risk Factors and Predictors of Subsequent ACL Injury in Either Knee After ACL Reconstruction:Prospective Analysis of 2488 Primary ACL Reconstructions From the MOON Cohort. Am. J. Sports Med. 2015, 43, 1583–1590. [Google Scholar] [CrossRef]
- Wojtys, E.M.; Huston, L.J. Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am. J. Sports Med. 1994, 22, 89–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowling, E.J.; Steele, J.R. Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. J. Electromyogr. Kinesiol. 2001, 11, 263–268. [Google Scholar] [CrossRef]
- Letafatkar, A.; Rajabi, R.; Tekamejani, E.E.; Minoonejad, H.J.T.k. Effects of perturbation training on knee flexion angle and quadriceps to hamstring cocontraction of female athletes with quadriceps dominance deficit: Pre–post intervention study. Knee 2015, 22, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Cross, K.M.; Gurka, K.K.; Saliba, S.; Conaway, M.; Hertel, J. Comparison of hamstring strain injury rates between male and female intercollegiate soccer athletes. Am. J. Sports Med. 2013, 41, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Markolf, K.L.; O’Neill, G.; Jackson, S.R.; McAllister, D.R. Effects of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments. Am. J. Sports Med. 2004, 32, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Landry, S.C.; McKean, K.A.; Hubley-Kozey, C.L.; Stanish, W.D.; Deluzio, K.J. Neuromuscular and Lower Limb Biomechanical Differences Exist between Male and Female Elite Adolescent Soccer Players during an Unanticipated Side-cut Maneuver. Am. J. Sports Med. 2007, 35, 1888–1900. [Google Scholar] [CrossRef]
- Van Dyk, N.; Bahr, R.; Whiteley, R.; Tol, J.L.; Kumar, B.D.; Hamilton, B.; Farooq, A.; Witvrouw, E. Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: A 4-year cohort study. Am. J. Sports Med. 2016, 44, 1789–1795. [Google Scholar] [CrossRef]
- Evangelidis, P.E.; Pain, M.T.; Folland, J. Angle-specific hamstring-to-quadriceps ratio: A comparison of football players and recreationally active males. J. Sports Sci. 2015, 33, 309–319. [Google Scholar] [CrossRef]
- Kannus, P. Isokinetic evaluation of muscular performance. Int. J. Sports Med. 1994, 15, S11–S18. [Google Scholar] [CrossRef]
- Caterisano, A.; Moss, R.E.; Pellinger, T.K.; Woodruff, K.; Lewis, V.C.; Booth, W.; Khadra, T. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J. Strength Condit. Res. 2002, 16, 428–432. [Google Scholar]
- Navarro, E.; Chorro, D.; Torres, G.; Navandar, A.; Rueda, J.; Veiga, S. Electromyographic activity of quadriceps and hamstrings of a professional football team during Bulgarian Squat and Lunge exercises. J. Hum. Sport Exerc. 2020, 1. [Google Scholar] [CrossRef]
- Torres, G.; Chorro, D.; Navandar, A.; Rueda, J.; Fernández, L.; Navarro, E. Assessment of Hamstring: Quadriceps Coactivation without the Use of Maximum Voluntary Isometric Contraction. Appl. Sci. 2020, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Begalle, R.L.; DiStefano, L.J.; Blackburn, T.; Padua, D.A. Quadriceps and Hamstrings Coactivation During Common Therapeutic Exercises. J. Athl. Train. (Allen Press) 2012, 47, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Pincivero, D.M.; Aldworth, C.; Dickerson, T.; Petry, C.; Shultz, T. Quadriceps-hamstring EMG activity during functional, closed kinetic chain exercise to fatigue. Eur. J. Appl. Physiol. 2000, 81, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Santana, J. Single-leg training for 2-legged sports: Efficacy of strength development in athletic performance. Strength Condit. J. 2001, 23, 35. [Google Scholar] [CrossRef]
- Ruas, C.V.; Pinto, R.S.; Haff, G.G.; Lima, C.; Pinto, M.D.; Brown, L.E. Alternative Methods of Determining Hamstrings-to-Quadriceps Ratios: A Comprehensive Review. Sports Med. 2019, 5, 11. [Google Scholar] [CrossRef]
- Nimphius, S.; McBride, J.M.; Rice, P.E.; Goodman-Capps, C.L.; Capps, C.R. Comparison of Quadriceps and Hamstring Muscle Activity during an Isometric Squat between Strength-Matched Men and Women. J. Sports Sci. Med. 2019, 18, 101–108. [Google Scholar]
- Youdas, J.W.; Hollman, J.H.; Hitchcock, J.R.; Hoyme, G.J.; Johnsen, J.J. Comparison of hamstring and quadriceps femoris electromyographic activity between men and women during a single-limb squat on both a stable and labile surface. J. Strength Condit. Res. 2007, 21, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Robertson, R.; Dowling, J. Design and responses of Butterworth and critically damped digital filters. J. Electromyogr. Kinesiol. 2003, 13, 569–573. [Google Scholar] [CrossRef]
- De Luca, C.; Gilmore, L.D.; Kuznetsov, M.; Roy, S.H. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J. Biomech. 2010, 43, 1573–1579. [Google Scholar] [CrossRef]
- Fukuda, T.Y.; Echeimberg, J.O.; Pompeu, J.E.; Lucareli, P.R.G.; Garbelotti, S.; Gimenes, R.O.; Apolinário, A. Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. J. Appl. Res. 2010, 10, 32–39. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.; O’Kelley, E.; Kutz, M.; Langford, G.; Ernest, J.; Torres, M. Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. J. Sport Rehab. 2010, 19, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Liporaci, R.F.; Saad, M.C.; Bevilaqua-Grossi, D.; Riberto, M.J.B.O.S.; Medicine, E. Preseason intrinsic risk factors—associated odds estimate the exposure to proximal lower limb injury throughout the season among professional football players. BMJ Open Sport Exerc. Med. 2018, 4, e000334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marras, W.S.; Davis, K.G. A non-MVC EMG normalization technique for the trunk musculature: Part 1. Method development. J. Electromyogr. Kinesiol. 2001, 11, 1–9. [Google Scholar] [CrossRef]
- Suydam, S.M.; Manal, K.; Buchanan, T.S. The advantages of normalizing electromyography to ballistic rather than isometric or isokinetic tasks. J. Appl. Biomech. 2017, 33, 189–196. [Google Scholar] [CrossRef]
- Robertson, G.E.; Caldwell, G.E.; Hamill, J.; Kamen, G.; Whittlesey, S. Research Methods in Biomechanics; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Wright, J.; Delong, T.; Gehlsen, G. Electromyographic Activity of the Hamstrings During Performance of the Leg Curl, Stiff-Leg Deadlift, and Back Squat Movements. J. Strength Condit. Res. 1999, 13, 168–174. [Google Scholar]
- El-Ashker, S.; Carson, B.; Ayala, F.; De Ste Croix, M. Sex-related differences in joint-angle-specific functional hamstring-to-quadriceps strength ratios. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 949–957. [Google Scholar] [CrossRef]
- Andrade, M.D.S.; De Lira, C.A.B.; Koffes, F.D.C.; Mascarin, N.C.; Benedito-Silva, A.A.; Da Silva, A.C. Isokinetic hamstrings-to-quadriceps peak torque ratio: The influence of sport modality, gender, and angular velocity. J. Sports Sci. 2012, 30, 547–553. [Google Scholar] [CrossRef]
- Kong, P.W.; Burns, S.F. Bilateral difference in hamstrings to quadriceps ratio in healthy males and females. Phys. Ther. Sport 2010, 11, 12–17. [Google Scholar] [CrossRef]
- Gobbi, A.; Domzalski, M.; Pascual, J. Sports Traumatology, Arthroscopy. Comparison of anterior cruciate ligament reconstruction in male and female athletes using the patellar tendon and hamstring autografts. Knee Surg. Sports Traumatol. Arthrosc. 2004, 12, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Hewett, T.E. The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J. Electromyogr. Kinesiol. 2005, 15, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Monajati, A.; Larumbe-Zabala, E.; Goss-Sampson, M.; Naclerio, F. Surface electromyography analysis of three squat exercises. J. Hum. Kinet. 2019, 67, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, C.; Huston, K.; Amendola, A.; Williams, G.N. Quadriceps and hamstrings muscle control in athletic males and females. J. Orthop. Res. 2008, 26, 800–808. [Google Scholar] [CrossRef]
- Jaberzadeh, S.; Yeo, D.; Zoghi, M. The Effect of Altering Knee Position and Squat Depth on VMO: VL EMG Ratio During Squat Exercises. Physiother. Res. Int. 2016, 21, 164–173. [Google Scholar] [CrossRef]
- Panagiotopoulos, E.; Strzelczyk, P.; Herrmann, M.; Scuderi, G.J. Sports Traumatology, Arthroscopy. Cadaveric study on static medial patellar stabilizers: The dynamizing role of the vastus medialis obliquus on medial patellofemoral ligament. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 7–12. [Google Scholar] [CrossRef]
- Mostamand, J.; Bader, D.L.; Hudson, Z. Reliability testing of vasti activity measurements in taped and untaped patellofemoral conditions during single leg squatting in healthy subjects: A pilot study. J. Bodyw. Mov. Ther. 2013, 17, 271–277. [Google Scholar] [CrossRef]
- Souza, D.R.; Gross, M.T. Comparison of vastus medialis obliquus: Vastus lateralis muscle integrated electromyographic ratios between healthy subjects and patients with patellofemoral pain. Phys. Ther. 1991, 71, 310–316. [Google Scholar] [CrossRef]
- Araújo, S.R.S.; Medeiros, F.B.; Zaidan, A.D.; Pimenta, E.M.; Abreu, E.A.d.C.; Ferreira, J.C. Comparison of two classification criteria of lateral strength asymmetry of the lower limbs in professional soccer players. Rev. Brasil. Cineantropometria Desempenho Hum. 2017, 19, 644–651. [Google Scholar]
- Menzel, H.-J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.; de Andrade, A.G.; de Jesus-Moraleida, F.R. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. J. Strength Condit. Res. 2013, 27, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Crossley, K.; Bennell, K.; Green, S.; McConnell, J. A systematic review of physical interventions for patellofemoral pain syndrome. Clin. J. Sport Med. 2001, 11, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, N.; Arabadzhiev, T.; Hogrel, J.-Y.; Dimitrov, G.V. Fatigue analysis of interference EMG signals obtained from biceps brachii during isometric voluntary contraction at various force levels. J. Electromyogr. Kinesiol. 2009, 19, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.Y.; Alvarez, A.S.; Nassri, L.F.G.; Godoy, C.M.G. Quantitative electromyographic assessment of facial muscles in cross-bite female children. Rev. Bras. Eng. Biomed. 2008, 2008, 121–129. [Google Scholar] [CrossRef]
- Bilodeau, M.; Schindler-Ivens, S.; Williams, D.; Chandran, R.; Sharma, S.S. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J. Electromyogr. Kinesiol. 2003, 13, 83–92. [Google Scholar] [CrossRef]
- Urabe, Y.; Kobayashi, R.; Sumida, S.; Tanaka, K.; Yoshida, N.; Nishiwaki, G.A.; Tsutsumi, E.; Ochi, M. Electromyographic analysis of the knee during jump landing in male and female athletes. Knee 2005, 12, 129–134. [Google Scholar] [CrossRef]
- Krishnan, C.; Williamns, N. Sex Differences in Quadriceps and Hamstrings EMG–Moment Relationships. Med. Sci. Sports Exerc. 2009, 41, 1652–1660. [Google Scholar] [CrossRef] [Green Version]
- Ninos, J.C.; Irrgang, J.J.; Burdett, R.; Weiss, J.R. Electromyographic analysis of the squat performed in self-selected lower extremity neutral rotation and 30 of lower extremity turn-out from the self-selected neutral position. J. Orthop. Sports Phys. Ther. 1997, 25, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Thelen, D.G.; Chumanov, E.S.; Sherry, M.A.; Heiderscheit, B.C. Neuromusculoskeletal models provide insights into the mechanisms and rehabilitation of hamstring strains. Exerc. Sport Sci. Rev. 2006, 34, 135–141. [Google Scholar] [CrossRef]
Female Players | Male Players | Significance | Effect Size (d) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
H:Q ratio in the lunge exercise | 0.25 | 0.18 | 0.18 | 0.10 | p > 0.05 | - |
H:Q ratio in the Bulgarian squat exercise | 0.24 | 0.16 | 0.18 | 0.06 | p > 0.05 | - |
Female Players | Male Players | Significance | Effect Size (d) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
VM:VL ratio in the lunge exercise | 1.12 | 0.36 | 2.64 | 1.88 | p = 0.001 | 1.42 |
VM:VL ratio in the Bulgarian squat exercise | 1.10 | 1.88 | 2.04 | 0.72 | p < 0.001 | 1.76 |
Exercise Muscle | Female Players | Male Players | Significance | Effect Size (d) | |||
---|---|---|---|---|---|---|---|
Mean (%) | SD (%) | Mean (%) | SD (%) | ||||
Lunge | RF | 19.52 | 10.69 | 15.54 | 6.47 | p > 0.05 | - |
VL | 38.42 | 5.29 | 26.53 | 7.33 | p < 0.001 | 1.75 | |
VM | 42.07 | 9.75 | 57.93 | 9.82 | p = 0.001 | 1.62 | |
BF | 46.87 | 12.92 | 44.64 | 9.08 | p > 0.05 | - | |
ST | 53.13 | 12.92 | 55.36 | 9.08 | p > 0.05 | - | |
Bulgarian squat | RF | 21.70 | 10.16 | 15.90 | 6.32 | p > 0.05 | - |
VL | 36.99 | 5.57 | 28.87 | 6.57 | p = 0.006 | 1.29 | |
VM | 41.31 | 8.91 | 55.23 | 8.08 | p = 0.001 | 1.67 | |
BF | 49.92 | 1.57 | 44.64 | 9.08 | p > 0.05 | - | |
ST | 50.08 | 13.57 | 55.36 | 9.08 | p > 0.05 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, G.; Armada-Cortés, E.; Rueda, J.; San Juan, A.F.; Navarro, E. Comparison of Hamstrings and Quadriceps Muscle Activation in Male and Female Professional Soccer Players. Appl. Sci. 2021, 11, 738. https://doi.org/10.3390/app11020738
Torres G, Armada-Cortés E, Rueda J, San Juan AF, Navarro E. Comparison of Hamstrings and Quadriceps Muscle Activation in Male and Female Professional Soccer Players. Applied Sciences. 2021; 11(2):738. https://doi.org/10.3390/app11020738
Chicago/Turabian StyleTorres, Gonzalo, Estrella Armada-Cortés, Javier Rueda, Alejandro F. San Juan, and Enrique Navarro. 2021. "Comparison of Hamstrings and Quadriceps Muscle Activation in Male and Female Professional Soccer Players" Applied Sciences 11, no. 2: 738. https://doi.org/10.3390/app11020738
APA StyleTorres, G., Armada-Cortés, E., Rueda, J., San Juan, A. F., & Navarro, E. (2021). Comparison of Hamstrings and Quadriceps Muscle Activation in Male and Female Professional Soccer Players. Applied Sciences, 11(2), 738. https://doi.org/10.3390/app11020738