Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood
Abstract
:1. Introduction
2. High Hydrostatic Pressure—HHP
2.1. General Description of HHP Technology
2.2. Microbiological Quality and Safety
2.3. Effects of HHP on the Quality of Fish and Seafood
3. Ultrasound—US
3.1. General Description of US
3.2. Microbiological Quality and Safety
3.3. Effects of US on the Quality of Fish and Seafood
4. Non-Thermal Atmospheric Plasma—NTAP
4.1. General Description of NTAP Technology
4.2. Microbiological Quality and Safety
4.3. Effects of NTAP on the Quality of Fish and Seafood
5. Pulsed Electric Fields—PEF
5.1. General Description of PEF Technology
5.2. Microbiological Quality and Safety
5.3. Effects of PEF on the Quality of Fish and Seafood
Products | Treatment Conditions | Combination of Methods | Effects on Physicochemical Parameters | Effects on Sensory Characteristics | References |
---|---|---|---|---|---|
Asian sea bass skin | 24 kV/cm, 72 ms, pulse width 0.1 ms, and pulse repetition times 20 ms | PEF and vacuum impregnation (VI) for 10, 15, 20, and 30 min by hydrolysis with porcine pancreas lipase (PPL) | PEF-VI-PPL: had lower monounsaturated and polyunsaturated fatty acid contents | PEF-VI-PPL: low fishy odor/flavor intensities of the resulting hydrolyzed collagen were observed, and overall reduced abundance of volatile compounds | [181] |
Arthrospira platensis | 38 kV/cm, pulse duration 232 μs, frequency 158 Hz | PEF and heat at 35 °C | Extraction of phycobiliproteins was higher (0.15 mg/mL) and purer at lower treatment time (0.03 s compared to 5400 s) | NT | [186] |
Fish wastes (fish bones) | 5, 10, 15, 20, and 25 kV/cm, pulses 2, 4, 6, 8, 10, and 12 | PEF and NaOH (1, 2, 3, 4, 5, and 6%), ratio of material to liquid (1:5, 1:10, 1:15, 1:20, and 1:25 g/mL) | PEF accelerated the extraction speed and improved the yield of chondroitin sulfate (CS) from fish bones CS purity was high, and the extract did not contain any other glycosaminoglycans | NT | [180] |
Fish residues (gills, bones, and heads) from sea bass and sea bream | 1.40 kV/cm, pulse duration 20 µs, 100 pulses, frequency 10 Hz | Water extraction assisted by PEF | PEF increased the antioxidant activity reaching values of 389.62 µg Trolox/g Water extraction assisted by PEF led to significant increases from heads, bones, and gills reaching 35.8, 68.6, and 33.8% for sea bream and 60.7, 71.8, and 22.1% for sea bass | NT | [184] |
Pacific white shrimp (L. vannamei) | 4, 8, 12, and 16 kV/cm, 120, 160, 200, and 240 pulses | PEF and US-assisted extraction (UAE) | PEF: reduced lipid oxidation PEF+UAE: the highest lipid yield (30.34 g per 100g of solids) and higher content of PUFAs and carotenoids, such as astaxanthin, astaxanthin monoester, astaxanthin diester, canthaxanthin, and b-carotene | NT | [182] |
Freshwater mussels | 10, 15, 20, 25, 30, and 35 kV/cm, 2, 4, 6, 8, 10, and 12 pulses | PEF and enzymolysis (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 h) | PEF showed higher extraction speed and up to 77.08% higher protein extraction at 20 kV/cm and 8 pulses and 2h enzymolysis | PEF: Off-odor of treated mussel samples reduced | [187] |
Yellowfin tuna (T. albacares) fillets | 3.5 Vrms at 20 kHz | PEF and oscillating magnetic fields (OMF), 75 mT at 1 Hz and supercooling at −3.2 °C | NT | PEF-OMF-Supercooling:
| [12] |
Lumpfish (C. lumpus) roes | 4, 8, 10, 12, 13, 15 kV/cm, 2, 4, 6, 10, 12 pulses | PEF at 13 and 15 kV with 5 and 10 pulses and HHP at 200 | PEF (11 kV/cm and 12 pulses): 1 log10 TVC reduction PEF (13 kV/cm, 12 pulses) + HHP (200 MPa): 2 log10 reduction | PEF: slightly affected the firmness of the roes PEF (4–12 kV/cm): damaged roes were less than 8.0% with greater damage with higher pulse numbers | [175] |
Salmon | 0.35 kV/cm, 60 pulses, pulse duration 2 ms | PEF and HHP at 200 or 300 MPa and vice versa | NT | PEF (0.35 kV/cm, 20–40 pulses): the muscle cells decreased in size, and gaping occurred with collagen leakage in the gap PEF (0.35 kV/cm, 20–40 pulses) + HHP (300 MPa): produced gaping without visible collagen leakage in the gap | [175] |
6. Electrolyzed Water—EW
6.1. General Description of EW Technology
6.2. Microbiological Quality and Safety
6.3. Effects of EW on the Quality of Fish and Seafood
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Gram, L.; Huss, H.H. Microbiological Spoilage of Fish and Fish Products. Int. J. Food Microbiol. 1996, 33, 121–137. [Google Scholar] [CrossRef]
- Boziaris, I.S. Introduction to Seafood Processing-Assuring Quality and Safety of Seafood. In Seafood Processing; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 1–8. ISBN 9781118346174. [Google Scholar]
- Adams, M.R.; Moss, M.O. Food Microbiology, 3rd ed.; The Royal Society of Chemistry: Cambridge, UK, 2008; ISBN 9780854042845. [Google Scholar]
- Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; de Souza Sant’Ana, A. Mild Processing Applied to the Inactivation of the Main Foodborne Bacterial Pathogens: A Review. Trends Food Sci. Technol. 2017, 66, 20–35. [Google Scholar] [CrossRef]
- Khan, I.; Tango, C.N.; Miskeen, S.; Lee, B.H.; Oh, D.-H. Hurdle Technology: A Novel Approach for Enhanced Food Quality and Safety—A Review. Food Control 2017, 73, 1426–1444. [Google Scholar] [CrossRef]
- Stoica, M.; Alexe, P.; Mihalcea, L. Atmospheric Cold Plasma as New Strategy for Foods Processing—An Overview. Innov. Rom. Food Biotechnol. 2014, 15, 1–8. [Google Scholar]
- Pasquali, F.; Stratakos, A.C.; Koidis, A.; Berardinelli, A.; Cevoli, C.; Ragni, L.; Mancusi, R.; Manfreda, G.; Trevisani, M. Atmospheric Cold Plasma Process for Vegetable Leaf Decontamination: A Feasibility Study on Radicchio (Red Chicory, Cichorium intybus L.). Food Control 2016, 60, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Majid, I.; Nayik, G.A.; Nanda, V. Ultrasonication and Food Technology: A Review. Cogent Food Agric. 2015, 1, 1071022. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Inguglia, E.S.; Linton, M.; Tollerton, J.; Murphy, L.; Corcionivoschi, N.; Koidis, A.; Tiwari, B.K. Effect of High Pressure Processing on the Safety, Shelf Life and Quality of Raw Milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Bulut, S.; Karatzas, K.A.G. Inactivation of Escherichia coli K12 in Phosphate Buffer Saline and Orange Juice by High Hydrostatic Pressure Processing Combined with Freezing. LWT 2021, 136, 110313. [Google Scholar] [CrossRef]
- Kang, T.; Shafel, T.; Lee, D.; Lee, C.J.; Lee, S.H.; Jun, S. Quality Retention of Fresh Tuna Stored Using Supercooling Technology. Foods 2020, 9, 1356. [Google Scholar] [CrossRef]
- Koutchma, T. Emerged HPP Commercial Applications. In Adapting High Hydrostatic Pressure for Food Processing Operations; Elsevier: Amsterdam, The Netherlands, 2014; pp. 29–34. [Google Scholar]
- Mikš-Krajnik, M.; James Feng, L.X.; Bang, W.S.; Yuk, H.-G. Inactivation of Listeria monocytogenes and Natural Microbiota on Raw Salmon Fillets Using Acidic Electrolyzed Water, Ultraviolet Light or/and Ultrasounds. Food Control 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Rahman, S.; Khan, I.; Oh, D.-H. Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. Compr. Rev. Food Sci. Food Saf. 2016, 15, 471–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elamin, W.M.; Endan, J.B.; Yosuf, Y.A.; Shamsudin, R.; Ahmedov, A. High Pressure Processing Technology and Equipment Evolution: A Review. J. Eng. Sci. Technol. Rev. 2015, 8, 75–83. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Giovagnoli, C.; Pérez-Won, M.; Reyes, J.E.; Vergara, J.; Miranda, M.; Uribe, E.; Di Scala, K. Application of High Hydrostatic Pressure to Aloe Vera (Aloe barbadensis Miller) Gel: Microbial Inactivation and Evaluation of Quality Parameters. Innov. Food Sci. Emerg. Technol. 2012, 13, 57–63. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K. Minimally Processed Meat and Fish Products. In Food Engineering Series; Springer: Basel, Switzerland, 2015; pp. 193–250. [Google Scholar]
- Bajovic, B.; Bolumar, T.; Heinz, V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci. 2012, 92, 280–289. [Google Scholar] [CrossRef] [PubMed]
- McClements, J.M.J.; Patterson, M.F.; Linton, M. The Effect of Growth Stage and Growth Temperature on High Hydrostatic Pressure Inactivation of Some Psychrotrophic Bacteria in Milk. J. Food Prot. 2001, 64, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.F. Food Technologies: High Pressure Processing. In Encyclopedia of Food Safety, 1st ed.; Motarjemi, Y., Moy, G., Todd, E., Eds.; Academic Press: Oxford, UK, 2014; Volume 3, pp. 196–201. [Google Scholar]
- Nair, A.; Maldonaldo, J.A.; Miyazawa, Y.; Cuitiño, A.M.; Schaffner, D.W.; Karwe, M. Numerical simulation of stress distribution in heterogeneous solids during high pressure processing. Food Res. Int. 2016, 84, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Linton, M.; Patterson, M.F. High Pressure Processing of Foods for Microbiological Safety and Quality. Acta Microbiol. Immunol. Hung. 2000, 47, 175–182. [Google Scholar] [CrossRef]
- Scheinberg, J.A.; Svoboda, A.L.; Cutter, C.N. High-Pressure Processing and Boiling Water Treatments for Reducing Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp., and Staphylococcus aureus during Beef Jerky Processing. Food Control 2014, 39, 105–110. [Google Scholar] [CrossRef]
- Barba, F.J.; Terefe, N.S.; Buckow, R.; Knorr, D.; Orlien, V. New Opportunities and Perspectives of High Pressure Treatment to Improve Health and Safety Attributes of Foods. A Review. Food Res. Int. 2015, 77, 725–742. [Google Scholar] [CrossRef]
- Shynkaryk, M.V.; Pyatkovskyy, T.; Yousef, A.E.; Sastry, S.K. In-Situ Monitoring of Inactivation of Listeria innocua under High Hydrostatic Pressure Using Electrical Conductivity Measurement. J. Food Eng. 2020, 285, 110087. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Bulut, S.; Karatzas, K.A.G.; Boziaris, I.S. Inactivation of Listeria monocytogenes in Raw and Hot Smoked Trout Fillets by High Hydrostatic Pressure Processing Combined with Liquid Smoke and Freezing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102427. [Google Scholar] [CrossRef]
- Tao, Y.; Hogan, E.; Kelly, A.L. High-Pressure Processing of Foods: An Overview. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.W., Ed.; Academic Press: Oxford, UK, 2014; ISBN 9780126767575. [Google Scholar]
- Whitney, B.M.; Williams, R.C.; Eifert, J.; Marcy, J. High-Pressure Resistance Variation of Escherichia coli O157:H7 Strains and Salmonella Serovars in Tryptic Soy Broth, Distilled Water, and Fruit Juice. J. Food Prot. 2007, 70, 2078–2083. [Google Scholar] [CrossRef] [PubMed]
- Kural, A.; Shearer, A.; Kingsley, D.; Chen, H. Conditions for High Pressure Inactivation of Vibrio parahaemolyticus in Oysters. Int. J. Food Microbiol. 2008, 127, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Hyeon-Yong, L.; Ahn, J. High Pressure Inactivation Kinetics of Salmonella enterica and Listeria monocytogenes in Milk, Orange Juice, and Tomato Juice. Food Sci. Biotechnol. 2009, 18, 861–866. [Google Scholar]
- Barbosa-Cánovas, G.V.; Juliano, P. Food Sterilization by Combining High Pressure and Thermal Energy. In Food Engineering Series; Springer: Basel, Switzerland, 2008; pp. 9–46. [Google Scholar]
- Farkas, D.F.; Hoover, D.G. High Pressure Processing. J. Food Sci. 2000, 65, 47–64. [Google Scholar] [CrossRef]
- Huang, H.-W.; Lung, H.-M.; Yang, B.B.; Wang, C.-Y. Responses of Microorganisms to High Hydrostatic Pressure Processing. Food Control 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Picart, L.; Dumay, E.; Guiraud, J.-P.; Cheftel, C. Combined High Pressure–Sub-Zero Temperature Processing of Smoked Salmon Mince: Phase Transition Phenomena and Inactivation of Listeria innocua. J. Food Eng. 2005, 68, 43–56. [Google Scholar] [CrossRef]
- Luscher, C.; Balasa, A.; Fröhling, A.; Ananta, E.; Knorr, D. Effect of High-Pressure-Induced Ice I-to-Ice III Phase Transitions on Inactivation of Listeria innocua in Frozen Suspension. Appl. Environ. Microbiol. 2004, 70, 4021–4029. [Google Scholar] [CrossRef] [Green Version]
- Urrutia Benet, G.; Schlüter, O.; Knorr, D. High Pressure–Low Temperature Processing. Suggested Definitions and Terminology. Innov. Food Sci. Emerg. Technol. 2004, 5, 413–427. [Google Scholar] [CrossRef]
- Edebo, L.; Hedén, C.-G. Disruption of Frozen Bacteria as a Consequence of Changes in the Crystal Structure of Ice. J. Biochem. Microbiol. Technol. Eng. 1960, 2, 113–120. [Google Scholar] [CrossRef]
- Moussa, M.; Perrier-Cornet, J.-M.; Gervais, P. Damage in Escherichia coli Cells Treated with a Combination of High Hydrostatic Pressure and Subzero Temperature. Appl. Environ. Microbiol. 2007, 73, 6508–6518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavov, A.M.; Denev, P.N.; Denkova, Z.R.; Kostov, G.A.; Denkova-Kostova, R.S.; Chochkov, R.M.; Deseva, I.N.; Teneva, D.G. Emerging Cold Pasteurization Technologies to Improve Shelf Life and Ensure Food Quality. In Food Quality and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–123. [Google Scholar]
- Smelt, J.P.P. Recent Advances in the Microbiology of High Pressure Processing. Trends Food Sci. Technol. 1998, 9, 152–158. [Google Scholar] [CrossRef]
- Bayındırlı, A.; Alpas, H.; Bozoğlu, F.; Hızal, M. Efficiency of High Pressure Treatment on Inactivation of Pathogenic Microorganisms and Enzymes in Apple, Orange, Apricot and Sour Cherry Juices. Food Control 2006, 17, 52–58. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Raghavarao, K.S.M.S.; Balasubramaniam, V.M.; Niranjan, K.; Knorr, D. Opportunities and Challenges in High Pressure Processing of Foods. Crit. Rev. Food Sci. Nutr. 2007, 47, 69–112. [Google Scholar] [CrossRef]
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current Status and Future Trends of High-Pressure Processing in Food Industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Devlieghere, F.; Vermeiren, L.; Debevere, J. New Preservation Technologies: Possibilities and Limitations. Int. Dairy J. 2004, 14, 273–285. [Google Scholar] [CrossRef]
- Teixeira, B.; Fidalgo, L.; Mendes, R.; Costa, G.; Cordeiro, C.; Marques, A.; Saraiva, J.A.; Nunes, M.L. Effect of High Pressure Processing in the Quality of Sea Bass (Dicentrarchus labrax) Fillets: Pressurization Rate, Pressure Level and Holding Time. Innov. Food Sci. Emerg. Technol. 2014, 22, 31–39. [Google Scholar] [CrossRef]
- Tsironi, T.; Anjos, L.; Pinto, P.I.S.; Dimopoulos, G.; Santos, S.; Santa, C.; Manadas, B.; Canario, A.; Taoukis, P.; Power, D. High Pressure Processing of European Sea Bass (Dicentrarchus labrax) Fillets and Tools for Flesh Quality and Shelf Life Monitoring. J. Food Eng. 2019, 262, 83–91. [Google Scholar] [CrossRef]
- Mengden, R.; Röhner, A.; Sudhaus, N.; Klein, G. High-Pressure Processing of Mild Smoked Rainbow Trout Fillets (Oncorhynchus mykiss) and Fresh European Catfish Fillets (Silurus glanis). Innov. Food Sci. Emerg. Technol. 2015, 32, 9–15. [Google Scholar] [CrossRef]
- Gomezestaca, J.; Montero, P.; Gimenez, B.; Gomezguillen, M. Effect of Functional Edible Films and High Pressure Processing on Microbial and Oxidative Spoilage in Cold-Smoked Sardine (Sardina pilchardus). Food Chem. 2007, 105, 511–520. [Google Scholar] [CrossRef]
- Gudbjornsdottir, B.; Jonsson, A.; Hafsteinsson, H.; Heinz, V. Effect of High-Pressure Processing on Listeria spp. and on the Textural and Microstructural Properties of Cold Smoked Salmon. LWT Food Sci. Technol. 2010, 43, 366–374. [Google Scholar] [CrossRef]
- Montero, P.; Gómez-Estaca, J.; Gómez-Guillén, M.C. Influence of Salt, Smoke, and High Pressure on Growth of Listeria monocytogenes and Spoilage Microflora in Cold-Smoked Dolphinfish (Coryphaena hippurus). J. Food Prot. 2007, 70, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Briones, L.S.; Reyes, J.E.; Tabilo-Munizaga, G.E.; Pérez-Won, M.O. Microbial Shelf-Life Extension of Chilled Coho Salmon (Oncorhynchus kisutch) and Abalone (Haliotis rufescens) by High Hydrostatic Pressure Treatment. Food Control 2010, 21, 1530–1535. [Google Scholar] [CrossRef]
- Kaur, B.P.; Rao, P.S. Process Optimization for High-Pressure Processing of Black Tiger Shrimp (Penaeus monodon) Using Response Surface Methodology. Food Sci. Technol. Int. 2017, 23, 197–208. [Google Scholar] [CrossRef]
- Kaur, B.P.; Rao, P.S.; Nema, P.K. Effect of Hydrostatic Pressure and Holding Time on Physicochemical Quality and Microbial Inactivation Kinetics of Black Tiger Shrimp (Penaeus monodon). Innov. Food Sci. Emerg. Technol. 2016. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Boziaris, I.S.; DeWitt, C.M. In Inactivation of Listeria monocytogenes in Frozen Cooked Shrimps by High Pressure Processing. In Proceedings of the IAFP 2019 Annual Meeting, Louisville, KY, USA, 21–24 July 2019. [Google Scholar]
- Humaid, S.; Nayyar, D.; Bolton, J.; Perkins, B.; Skonberg, D.I. Refrigerated Shelf-Life Evaluation of High Pressure Processed, Raw and Sous Vide Cooked Lobster. High Press. Res. 2020, 40, 444–463. [Google Scholar] [CrossRef]
- Phuvasate, S.; Su, Y.-C. Efficacy of Low-Temperature High Hydrostatic Pressure Processing in Inactivating Vibrio parahaemolyticus in Culture Suspension and Oyster Homogenate. Int. J. Food Microbiol. 2015, 196, 11–15. [Google Scholar] [CrossRef]
- Prapaiwong, N.; Wallace, R.K.; Arias, C.R. Bacterial Loads and Microbial Composition in High Pressure Treated Oysters during Storage. Int. J. Food Microbiol. 2009, 131, 145–150. [Google Scholar] [CrossRef]
- Lai, K.-M.; Chi, H.-Y.; Hsu, K.-C. High-Pressure Treatment for Shelf-Life Extension and Quality Improvement of Oysters Cooked in a Traditional Taiwanese Oyster Omelet. J. Food Prot. 2010, 73, 53–61. [Google Scholar] [CrossRef]
- Linton, M.; Mc Clements, J.M.J.; Patterson, M.F. Changes in the Microbiological Quality of Shellfish, Brought About by Treatment with High Hydrostatic Pressure. Int. J. Food Sci. Technol. 2003, 38, 713–727. [Google Scholar] [CrossRef]
- Picon, A.; del Olmo, A.; Nuñez, M. Bacterial Diversity in Six Species of Fresh Edible Seaweeds Submitted to High Pressure Processing and Long-Term Refrigerated Storage. Food Microbiol. 2021, 94, 103646. [Google Scholar] [CrossRef] [PubMed]
- Rong, C.; Ling, Z.; Huihui, S.; Qi, L. Characterization of Microbial Community in High-Pressure Treated Oysters by High-Throughput Sequencing Technology. Innov. Food Sci. Emerg. Technol. 2018. [Google Scholar] [CrossRef]
- Dalgaard, P.; Vancanneyt, M.; Euras Vilalta, N.; Swings, J.; Fruekilde, P.; Leisner, J.J. Identification of Lactic Acid Bacteria from Spoilage Associations of Cooked and Brined Shrimps Stored under Modified Atmosphere between 0 °C and 25 °C. J. Appl. Microbiol. 2003, 94, 80–89. [Google Scholar] [CrossRef]
- Dalgaard, P. Fresh and Lightly Preserved Seafood. In Shelf-Life Evaluation of Foods, 2nd ed.; Man, D., Jones, A., Eds.; Aspen Publishers: Gaithersburg, MD, USA, 2000; ISBN 0834217821. [Google Scholar]
- Leisner, J.J.; Gram, L. FISH|Spoilage of Fish. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 932–937. ISBN 9780123847331. [Google Scholar]
- Yagiz, Y.; Kristinsson, H.G.; Balaban, M.O.; Marshall, M.R. Effect of High Pressure Treatment on the Quality of Rainbow Trout (Oncorhynchus mykiss) and Mahi Mahi (Coryphaena hippurus). J. Food Sci. 2007, 72, C509–C515. [Google Scholar] [CrossRef]
- Karim, N.U.; Kennedy, T.; Linton, M.; Watson, S.; Gault, N.; Patterson, M.F. Effect of High Pressure Processing on the Quality of Herring (Clupea harengus) and Haddock (Melanogrammus aeglefinus) Stored on Ice. Food Control 2011, 22, 476–484. [Google Scholar] [CrossRef]
- Erkan, N.; Üretener, G.; Alpas, H. Effect of High Pressure (HP) on the Quality and Shelf Life of Red Mullet (Mullus surmelutus). Innov. Food Sci. Emerg. Technol. 2010, 11, 259–264. [Google Scholar] [CrossRef]
- Rode, T.M.; Hovda, M.B. High Pressure Processing Extend the Shelf Life of Fresh Salmon, Cod and Mackerel. Food Control 2016, 70, 242–248. [Google Scholar] [CrossRef]
- Perez-Won, M.; Lemus-Mondaca, R.; Herrera-Lavados, C.; Reyes, J.E.; Roco, T.; Palma-Acevedo, A.; Tabilo-Munizaga, G.; Aubourg, S.P. Combined Treatments of High Hydrostatic Pressure and CO2 in Coho Salmon (Oncorhynchus kisutch): Effects on Enzyme Inactivation, Physicochemical Properties, and Microbial Shelf Life. Foods 2020, 9, 273. [Google Scholar] [CrossRef] [Green Version]
- Fernández, K.; Aspe, E.; Roeckel, M. Shelf-Life Extension on Fillets of Atlantic Salmon (Salmo salar) Using Natural Additives, Superchilling and Modified Atmosphere Packaging. Food Control 2009, 20, 1036–1042. [Google Scholar] [CrossRef]
- Lebow, N.K.; DesRocher, L.D.; Younce, F.L.; Zhu, M.-J.; Ross, C.F.; Smith, D.M. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon. J. Food Sci. 2017, 82, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Ritz, M.; Jugiau, F.; Federighi, M.; Chapleau, N.; de Lamballerie, M. Effects of High Pressure, Subzero Temperature, and pH on Survival of Listeria monocytogenes in Buffer and Smoked Salmon. J. Food Prot. 2008, 71, 1612–1618. [Google Scholar] [CrossRef] [PubMed]
- Del Olmo, A.; Picon, A.; Nuñez, M. Preservation of Five Edible Seaweeds by High Pressure Processing: Effect on Microbiota, Shelf Life, Colour, Texture and Antioxidant Capacity. Algal Res. 2020, 49, 101938. [Google Scholar] [CrossRef]
- López-Pérez, O.; del Olmo, A.; Picon, A.; Nuñez, M. Volatile Compounds and Odour Characteristics during Long-Term Storage of Kombu Seaweed (Laminaria ochroleuca) Preserved by High Pressure Processing, Freezing and Salting. LWT 2020, 118, 108710. [Google Scholar] [CrossRef]
- Campus, M.; Addis, M.F.; Cappuccinelli, R.; Porcu, M.C.; Pretti, L.; Tedde, V.; Secchi, N.; Stara, G.; Roggio, T. Stress Relaxation Behaviour and Structural Changes of Muscle Tissues from Gilthead Sea Bream (Sparus aurata L.) Following High Pressure Treatment. J. Food Eng. 2010, 96, 192–198. [Google Scholar] [CrossRef]
- Zhou, A.; Lin, L.; Liang, Y.; Benjakul, S.; Shi, X.; Liu, X. Physicochemical Properties of Natural Actomyosin from Threadfin bream (Nemipterus spp.) Induced by High Hydrostatic Pressure. Food Chem. 2014, 156, 402–407. [Google Scholar] [CrossRef]
- Chouhan, A.; Kaur, B.P.; Rao, P.S. Effect of High Pressure Processing and Thermal Treatment on Quality of Hilsa (Tenualosa ilisha) Fillets during Refrigerated Storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 151–160. [Google Scholar] [CrossRef]
- He, H.; Adams, R.M.; Farkas, D.F.; Morrissey, M.T. Use of High-Pressure Processing for Oyster Shucking and Shelf-Life Extension. J. Food Sci. 2002, 67, 640–645. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Kelly, A.L.; Kerry, J.P. Effects of High-Pressure and Heat Treatments on Physical and Biochemical Characteristics of Oysters (Crassostrea gigas). Innov. Food Sci. Emerg. Technol. 2007, 8, 30–38. [Google Scholar] [CrossRef]
- Bindu, J.; Ginson, J.; Kamalakanth, C.K.; Srinivasagopal, T.K. High Pressure Treatment of Green Mussel Perna viridis Linnaeus, 1758: Effect on Shucking and Quality Changes in Meat during Chill Storage. Indian J. Fish. 2015, 62, 70–76. [Google Scholar]
- Hughes, B.H.; Perkins, L.B.; Yang, T.C.; Skonberg, D.I. Impact of Post-Rigor High Pressure Processing on the Physicochemical and Microbial Shelf-Life of Cultured Red Abalone (Haliotis rufescens). Food Chem. 2016, 194, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Bindu, J.; Ginson, J.; Kamalakanth, C.K.; Asha, K.K.; Srinivasa Gopal, T.K. Physico-Chemical Changes in High Pressure Treated Indian White Prawn (Fenneropenaeus indicus) during Chill Storage. Innov. Food Sci. Emerg. Technol. 2013. [Google Scholar] [CrossRef]
- Dang, T.T.; Feyissa, A.H.; Gringer, N.; Jessen, F.; Olsen, K.; Bøknæs, N.; Orlien, V. Effects of High Pressure and Ohmic Heating on Shell Loosening, Thermal and Structural Properties of Shrimp (Pandalus borealis). Innov. Food Sci. Emerg. Technol. 2020. [Google Scholar] [CrossRef]
- Shi, L.; Xiong, G.; Yin, T.; Ding, A.; Li, X.; Wu, W.; Qiao, Y.; Liao, L.; Jiao, C.; Wang, L. Effects of Ultra-High Pressure Treatment on the Protein Denaturation and Water Properties of Red Swamp Crayfish (Procambarus clarkia). LWT 2020. [Google Scholar] [CrossRef]
- Erkan, N.; Üretener, G.; Alpas, H.; Selçuk, A.; Özden, Ö.; Buzrul, S. The Effect of Different High Pressure Conditions on the Quality and Shelf Life of Cold Smoked Fish. Innov. Food Sci. Emerg. Technol. 2011, 12, 104–110. [Google Scholar] [CrossRef]
- Montiel, R.; De Alba, M.; Bravo, D.; Gaya, P.; Medina, M. Effect of High Pressure Treatments on Smoked Cod Quality during Refrigerated Storage. Food Control 2012, 23, 429–436. [Google Scholar] [CrossRef]
- Montiel, R.; Bravo, D.; de Alba, M.; Gaya, P.; Medina, M. Combined effect of high pressure treatments and the lactoperoxidase system on the inactivation of Listeria monocytogenes in cold-smoked salmon. Innov. Food Sci. Emerg. Technol. 2012, 16, 26–32. [Google Scholar] [CrossRef]
- Espinosa, M.C.; Díaz, P.; Linares, M.B.; Teruel, M.R.; Garrido, M.D. Quality Characteristics of Sous Vide Ready to Eat Seabream Processed by High Pressure. LWT Food Sci. Technol. 2015, 64, 657–662. [Google Scholar] [CrossRef]
- Prego, R.; Fidalgo, L.G.; Saraiva, J.A.; Vázquez, M.; Aubourg, S.P. Impact of Prior High-Pressure Processing on Lipid Damage and Volatile Amines Formation in Mackerel Muscle Subjected to Frozen Storage and Canning. LWT 2021, 135, 109957. [Google Scholar] [CrossRef]
- Sequeira-Munoz, A.; Chevalier, D.; LeBail, A.; Ramaswamy, H.S.; Simpson, B.K. Physicochemical Changes Induced in Carp (Cyprinus carpio) Fillets by High Pressure Processing at Low Temperature. Innov. Food Sci. Emerg. Technol. 2006, 7, 13–18. [Google Scholar] [CrossRef]
- Schubring, R.; Meyer, C.; Schlüter, O.; Boguslawski, S.; Knorr, D. Impact of High Pressure Assisted Thawing on the Quality of Fillets from Various Fish Species. Innov. Food Sci. Emerg. Technol. 2003, 4, 257–267. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Parkinson, J.A.; Piggott, J.R. High-Pressure Processing and Water-Holding Capacity of Fresh and Cold-Smoked Salmon (Salmo salar). LWT Food Sci. Technol. 2007, 40, 544–551. [Google Scholar] [CrossRef]
- Kaur, B.P.; Kaushik, N.; Rao, P.S.; Chauhan, O.P. Effect of High-Pressure Processing on Physical, Biochemical, and Microbiological Characteristics of Black Tiger Shrimp (Penaeus monodon). Food Bioprocess Technol. 2013, 6, 1390–1400. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, L.; Ding, G.; Hu, X.; Liao, X.; Zhang, Y. High Hydrostatic Pressure and Thermal Treatments for Ready-to-Eat Wine-Marinated Shrimp: An Evaluation of Microbiological and Physicochemical Qualities. Innov. Food Sci. Emerg. Technol. 2013, 20, 16–23. [Google Scholar] [CrossRef]
- Yagiz, Y.; Kristinsson, H.G.; Balaban, M.O.; Welt, B.A.; Ralat, M.; Marshall, M.R. Effect of High Pressure Processing and Cooking Treatment on the Quality of Atlantic Salmon. Food Chem. 2009, 116, 828–835. [Google Scholar] [CrossRef]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and Lipid Oxidation in Meat: A Review with Emphasis on High-Pressure Treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- De Oliveira, F.A.; Neto, O.C.; dos Santos, L.M.R.; Ferreira, E.H.R.; Rosenthal, A. Effect of High Pressure on Fish Meat Quality—A Review. Trends Food Sci. Technol. 2017, 66, 1–19. [Google Scholar] [CrossRef]
- Amanatidou, A. Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon. Innov. Food Sci. Emerg. Technol. 2000, 1, 87–98. [Google Scholar] [CrossRef]
- Jantakoson, T.; Kijroongrojana, K.; Benjakul, S. Effect of High Pressure and Heat Treatments on Black Tiger Shrimp (Penaeus monodon Fabricius) Muscle Protein. Int. Aquat. Res. 2012, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Charoux, C.M.G.; Inguglia, E.S.; O’Donnell, C.P.; Tiwari, B.K. Ultrasonic Waves: Inactivation of Foodborne Microorganisms Using Power Ultrasound. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Betts, G.D.; Williams, A.; Oakley, R.M. Ultrasonic Standing Waves. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 659–664. ISBN 9780123847331. [Google Scholar]
- Earnshaw, R.G. Ultrasound: A New Opportunity for Food Preservation. In Ultrasound in Food Processing, 1st ed.; Malcolm, J.W., Mason, P.J., Mason, T.J., Eds.; Thompson Science: London, UK, 1998; ISBN 0751404292. [Google Scholar]
- Gallego-Juarez, J.A.; Rodriguez-Corral, G.; Gaete-Garreton, L. An Ultrasonic Transducer for High Power Applications in Gases. Ultrasonics 1978, 16, 267–271. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, E.P.; Neary, M.K.; Forrest, J.C.; Thomas, D.L.; Kauffman, R.G. Assessment of Lamb Carcass Composition from Live Animal Measurement of Bioelectrical Impedance or Ultrasonic Tissue Depths. J. Anim. Sci. 1996. [Google Scholar] [CrossRef] [PubMed]
- Bergen, R.D.; McKinnon, J.J.; Christensen, D.A.; Kohle, N.; Belanger, A. Use of Real-Time Ultrasound to Evaluate Live Animal Carcass Traits in Young Performance-Tested Beef Bulls. J. Anim. Sci. 1997, 75, 2300. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, B.G.; Holland, M.; Brazil, B.L. Evaluation of Ultrasound Imagery and Body Shape to Predict Carcass and Fillet Yield in Farm-Raised Catfish. J. Anim. Sci. 2001, 79, 1483. [Google Scholar] [CrossRef] [PubMed]
- Turhan, S.; Saricaoglu, F.T.; Oz, F. The Effect of Ultrasonic Marinating on the Transport of Acetic Acid and Salt in Anchovy Marinades. Food Sci. Technol. Res. 2013, 19, 849–853. [Google Scholar] [CrossRef] [Green Version]
- Sivaramakrishnan, R.; Incharoensakdi, A. Low Power Ultrasound Treatment for the Enhanced Production of Microalgae Biomass and Lipid Content. Biocatal. Agric. Biotechnol. 2019, 20, 101230. [Google Scholar] [CrossRef]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of Ultrasound in Analysis, Processing and Quality Control of Food: A Review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Earnshaw, R.G.; Appleyard, J.; Hurst, R.M. Understanding Physical Inactivation Processes: Combined Preservation Opportunities Using Heat, Ultrasound and Pressure. Int. J. Food Microbiol. 1995, 28, 197–219. [Google Scholar] [CrossRef]
- Kentish, S.; Feng, H. Applications of Power Ultrasound in Food Processing. Annu. Rev. Food Sci. Technol. 2014, 5, 263–284. [Google Scholar] [CrossRef]
- Gao, S.; Lewis, G.D.; Ashokkumar, M.; Hemar, Y. Inactivation of Microorganisms by Low-Frequency High-Power Ultrasound: 2. A Simple Model for the Inactivation Mechanism. Ultrason. Sonochem. 2014, 21, 454–460. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Yang, C. Application of Ultrasound Technology in Processing of Ready-to-Eat Fresh Food: A Review. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry: Juice HACCP Hazards and Controls Guidance, 1st ed.; Final Guidance; Center for Food Safety and Applied Nutrition: College Park, MD, USA, 2004. [Google Scholar]
- Bates, D.; Patist, A. Industrial Applications of High Power Ultrasonics in the Food, Beverage and Wine Industry. In Case Studies in Novel Food Processing Technologies; Elsevier: Amsterdam, The Netherlands, 2010; pp. 119–138. [Google Scholar]
- Cai, L.; Cao, M.; Cao, A.; Regenstein, J.; Li, J.; Guan, R. Ultrasound or Microwave Vacuum Thawing of Red Seabream (Pagrus major) Fillets. Ultrason. Sonochem. 2018, 47, 122–132. [Google Scholar] [CrossRef]
- Antunes-Rohling, A.; Astráin-Redín, L.; Calanche-Morales, J.B.; Marquina, P.; Beltrán, J.A.; Raso, J.; Cebrián, G.; Álvarez, I. Eco-Innovative Possibilities for Improving the Quality of Thawed Cod Fillets Using High-Power Ultrasound. Food Control 2021. [Google Scholar] [CrossRef]
- Ozuna, C.; Cárcel, J.A.; Walde, P.M.; Garcia-Perez, J.V. Low-Temperature Drying of Salted Cod (Gadus morhua) Assisted by High Power Ultrasound: Kinetics and Physical Properties. Innov. Food Sci. Emerg. Technol. 2014, 23, 146–155. [Google Scholar] [CrossRef]
- Condón-Abanto, S.; Arroyo, C.; Álvarez, I.; Brunton, N.; Whyte, P.; Lyng, J.G. An Assessment of the Application of Ultrasound in the Processing of Ready-to-Eat Whole Brown Crab (Cancer pagurus). Ultrason. Sonochem. 2018, 40, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Wang, J.; Raghavan, V. Effects of High-Intensity Ultrasound Processing on the Physiochemical and Allergenic Properties of Shrimp. Innov. Food Sci. Emerg. Technol. 2020, 65, 102441. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, M.; Li, X.; Mujumdar, A. Ultrasonically Enhanced Osmotic Pretreatment of Sea Cucumber Prior to Microwave Freeze Drying. Dry. Technol. 2008. [Google Scholar] [CrossRef]
- Dickson, J.S.; Anderson, M.E. Microbiological Decontamination of Food Animal Carcasses by Washing and Sanitizing Systems: A Review. J. Food Prot. 1992, 55, 133–140. [Google Scholar] [CrossRef]
- Arroyo, C.; Cebrián, G.; Pagán, R.; Condón, S. Synergistic Combination of Heat and Ultrasonic Waves under Pressure for Cronobacter sakazakii Inactivation in Apple Juice. Food Control 2012. [Google Scholar] [CrossRef]
- Pedrós-Garrido, S.; Condón-Abanto, S.; Beltrán, J.A.; Lyng, J.G.; Brunton, N.P.; Bolton, D.; Whyte, P. Assessment of High Intensity Ultrasound for Surface Decontamination of Salmon (S. salar), Mackerel (S. scombrus), Cod (G. morhua) and Hake (M. merluccius) Fillets, and Its Impact on Fish Quality. Innov. Food Sci. Emerg. Technol. 2017, 41, 64–70. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Bhandari, B.; Yang, C.-H. Ultrasound Treatment of Frozen Crayfish with Chitosan Nano-Composite Water-Retaining Agent: Influence on Cryopreservation and Storage Qualities. Food Res. Int. 2019. [Google Scholar] [CrossRef] [PubMed]
- Maas, P.; Grzegrzółka, B.; Kreß, P.; Oberle, M.; Kremer-Rücker, P.V. In Vivo—Determination of the Fat Content in Mirror Carps (Cyprinus carpio) Using Ultrasound, Microwave and Linear Measurements. Aquaculture 2019, 512, 734359. [Google Scholar] [CrossRef]
- Castillo, R.; Delgado, J.; Quiralte, J.; Blanco, C.; Carrillo, T. Food Hypersensitivity among Adult Patients: Epidemiological and Clinical Aspects. Allergol. Immunopathol. (Madr). 1996, 24, 93. [Google Scholar] [PubMed]
- Chokshi, N.Y.; Maskatia, Z.; Miller, S.; Guffey, D.; Minard, C.G.; Davis, C.M. Risk Factors in Pediatric Shrimp Allergy. Allergy Asthma Proc. 2015, 36, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Frank-Kamenet︠s︡kiĭ, D.A. Plasma: The Fourth State of Matter; Springer: Boston, MA, USA, 1972; Macmillan International Higher Education. [Google Scholar]
- Stratakos, A.C.; Koidis, A. Suitability, Efficiency and Microbiological Safety of Novel Physical Technologies for the Processing of Ready-to-Eat Meals, Meats and Pumpable Products. Int. J. Food Sci. Technol. 2015, 50, 1283–1302. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, S.K.; Thomas, S. Cold Plasma Applications in Food Packaging. In Cold Plasma in Food and Agriculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 293–307. ISBN 9780128013656. [Google Scholar]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of Cold Plasma on Food Quality: A Review. Foods 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Daeschlein, G.; von Woedtke, T.; Kindel, E.; Brandenburg, R.; Weltmann, K.-D.; Jünger, M. Antibacterial Activity of an Atmospheric Pressure Plasma Jet against Relevant Wound Pathogens In Vitro on a Simulated Wound Environment. Plasma Process. Polym. 2010, 7, 224–230. [Google Scholar] [CrossRef]
- Sonawane, S.K.; Sonal Patil, M.T. Non-Thermal Plasma: An Advanced Technology for Food Industry. Food Sci. Technol. Int. 2020, 26, 727–740. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Flexible Thin-Layer Dielectric Barrier Discharge Plasma Treatment of Pork Butt and Beef Loin: Effects on Pathogen Inactivation and Meat-Quality Attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef]
- López, M.; Calvo, T.; Prieto, M.; Múgica-Vidal, R.; Muro-Fraguas, I.; Alba-Elías, F.; Alvarez-Ordóñez, A. A Review on Non-Thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Song, H.P.; Kim, B.; Choe, J.H.; Jung, S.; Moon, S.Y.; Choe, W.; Jo, C. Evaluation of Atmospheric Pressure Plasma to Improve the Safety of Sliced Cheese and Ham Inoculated by 3-Strain Cocktail Listeria monocytogenes. Food Microbiol. 2009, 26, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.G.; Paff, M.; Friedman, G.; Fridman, G.; Fridman, A.; Brooks, A.D. Control of Methicillin-Resistant Staphylococcus aureus in Planktonic Form and Biofilms: A Biocidal Efficacy Study of Nonthermal Dielectric-Barrier Discharge Plasma. Am. J. Infect. Control 2010. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Noriega, E.; Thompson, A. Inactivation of Salmonella enterica Serovar Typhimurium on Fresh Produce by Cold Atmospheric Gas Plasma Technology. Food Microbiol. 2013, 33, 24–29. [Google Scholar] [CrossRef]
- Colejo, S.; Alvarez-Ordóñez, A.; Prieto, M.; González-Raurich, M.; López, M. Evaluation of Ultraviolet Light (UV), Non-Thermal Atmospheric Plasma (NTAP) and Their Combination for the Control of Foodborne Pathogens in Smoked Salmon and Their Effect on Quality Attributes. Innov. Food Sci. Emerg. Technol. 2018, 50, 84–93. [Google Scholar] [CrossRef]
- Zelaya, A.J.; Stough, G.; Rad, N.; Vandervoort, K.; Brelles-Mariño, G. Pseudomonas aeruginosa Biofilm Inactivation: Decreased Cell Culturability, Adhesiveness to Surfaces, and Biofilm Thickness upon High-Pressure Nonthermal Plasma Treatment. IEEE Trans. Plasma Sci. 2010, 38, 3398–3403. [Google Scholar] [CrossRef]
- Singh, A.; Benjakul, S. The Combined Effect of Squid Pen Chitooligosaccharides and High Voltage Cold Atmospheric Plasma on the Shelf-Life Extension of Asian Sea Bass Slices Stored at 4 °C. Innov. Food Sci. Emerg. Technol. 2020, 64, 102339. [Google Scholar] [CrossRef]
- Lee, K.; Paek, K.H.; Ju, W.T.; Lee, Y. Sterilization of Bacteria, Yeast, and Bacterial Endospores by Atmospheric-Pressure Cold Plasma Using Helium and oxygen. J. Microbiol. 2006, 44, 269–275. [Google Scholar]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric Cold Plasma Inactivation of Aerobic Microorganisms on Blueberries and Effects on Quality Attributes. Food Microbiol. 2015, 46, 479–484. [Google Scholar] [CrossRef]
- Tseng, S.; Abramzon, N.; Jackson, J.O.; Lin, W.-J. Gas Discharge Plasmas Are Effective in Inactivating Bacillus and Clostridium spores. Appl. Microbiol. Biotechnol. 2012, 93, 2563–2570. [Google Scholar] [CrossRef]
- Li, Y.-F.; Taylor, D.; Zimmermann, J.L.; Bunk, W.; Monetti, R.; Isbary, G.; Boxhammer, V.; Schmidt, H.-U.; Shimizu, T.; Thomas, H.M.; et al. In Vivo Skin Treatment Using Two Portable Plasma Devices: Comparison of a Direct and an Indirect Cold Atmospheric Plasma Treatment. Clin. Plasma Med. 2013, 1, 35–39. [Google Scholar] [CrossRef]
- Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial Strategies Centered around Reactive Oxygen Species—Bactericidal Antibiotics, Photodynamic Therapy, and Beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albertos, I.; Martín-Diana, A.B.; Cullen, P.J.; Tiwari, B.K.; Ojha, S.K.; Bourke, P.; Álvarez, C.; Rico, D. Effects of Dielectric Barrier Discharge (DBD) Generated Plasma on Microbial Reduction and Quality Parameters of Fresh Mackerel (Scomber scombrus) Fillets. Innov. Food Sci. Emerg. Technol. 2017. [Google Scholar] [CrossRef]
- Choi, S.; Puligundla, P.; Mok, C. Effect of Corona Discharge Plasma on Microbial Decontamination of Dried Squid Shreds Including Physico-Chemical and Sensory Evaluation. LWT 2017, 75, 323–328. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Shelf-Life of Refrigerated Asian Sea Bass Slices Treated with Cold Plasma as Affected by Gas Composition in Packaging. Int. J. Food Microbiol. 2020, 324, 108612. [Google Scholar] [CrossRef]
- Park, S.Y.; Ha, S.-D. Application of Cold Oxygen Plasma for the Reduction of Cladosporium cladosporioides and Penicillium citrinum on the Surface of Dried Filefish (Stephanolepis cirrhifer) Fillets. Int. J. Food Sci. Technol. 2015, 50, 966–973. [Google Scholar] [CrossRef]
- Albertos, I.; Martin-Diana, A.B.; Cullen, P.J.; Tiwari, B.K.; Ojha, K.S.; Bourke, P.; Rico, D. Shelf-Life Extension of Herring (Clupea harengus) Using In-Package Atmospheric Plasma Technology. Innov. Food Sci. Emerg. Technol. 2019. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Chen, J.; Chen, D.; Deng, S.; Xu, B. Effect of Cold Plasma on Maintaining the Quality of Chub Mackerel (Scomber japonicus): Biochemical and Sensory Attributes. J. Sci. Food Agric. 2019, 99, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Dielectric Barrier Discharge High Voltage Cold Atmospheric Plasma: An Innovative Nonthermal Technology for Extending the Shelf-Life of Asian Sea Bass Slices. J. Food Sci. 2019, 84, 1871–1880. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Combined Effects of High Voltage Cold Atmospheric Plasma and Antioxidants on the Qualities and Shelf-Life of Asian Sea Bass Slices. Innov. Food Sci. Emerg. Technol. 2019. [Google Scholar] [CrossRef]
- Esua, O.J.; Cheng, J.-H.; Sun, D.-W. Antimicrobial Activities of Plasma-Functionalized Liquids against Foodborne Pathogens on Grass Carp (Ctenopharyngodon Idella). Appl. Microbiol. Biotechnol. 2020, 104, 9581–9594. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Puligundla, P.; Mok, C. Corona Discharge Plasma Jet for Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Inoculated Pork and Its Impact on Meat Quality Attributes. Ann. Microbiol. 2016, 66, 685–694. [Google Scholar] [CrossRef]
- Puligundla, P.; Kim, J.-W.; Mok, C. Effect of Corona Discharge Plasma Jet Treatment on Decontamination and Sprouting of Rapeseed (Brassica napus L.) Seeds. Food Control 2017, 71, 376–382. [Google Scholar] [CrossRef]
- Kulawik, P.; Kumar Tiwari, B. Recent Advancements in the Application of Non-Thermal Plasma Technology for the Seafood Industry. Crit. Rev. Food Sci. Nutr. 2019, 59, 3199–3210. [Google Scholar] [CrossRef] [PubMed]
- Sukarminah, E.; Djali, M.; Andoyo, R.; Mardawati, E.; Rialita, T.; Cahyana, Y.; Hanidah, I.I.; Setiasih, I.S. Ozonization Technology and Its Effects on The Characteristics and Shelf-Life of Some Fresh Foods: A Review. KnE Life Sci. 2017, 2, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Cánovas, G.V.; Altunakar, B. Pulsed Electric Fields Processing of Foods: An Overview. In Food Engineering Series; Springer: Basel, Switzerland, 2006; pp. 3–26. [Google Scholar]
- Gudmundsson, M.; Hafsteinsson, H. Effect of High Intensity Electric Field Pulses on Solid Foods. In Emerging Technologies for Food Processing; Elsevier: Amsterdam, The Netherlands, 2005; pp. 141–153. ISBN 9780126767575. [Google Scholar]
- Pinton, M.B.; dos Santos, B.A.; Lorenzo, J.M.; Cichoski, A.J.; Boeira, C.P.; Campagnol, P.C.B. Green Technologies as a Strategy to Reduce NaCl and Phosphate in Meat Products: An Overview. Curr. Opin. Food Sci. 2021, 40, 1–5. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Suwandy, V.; Carne, A.; van de Ven, R.; Hopkins, D.L. Effect of Repeated Pulsed Electric Field Treatment on the Quality of Hot-Boned Beef Loins and Topsides. Meat Sci. 2016, 111, 139–146. [Google Scholar] [CrossRef]
- Mertens, B.; Knorr, D. Developments of Non-Thermal Processes for Food Preservation. Food Technol. (Chicago) 1992, 46, 124–133. [Google Scholar]
- Ho, S.Y.; Mittal, G.S. Electroporation of Cell Membranes: A Review. Crit. Rev. Biotechnol. 1996, 16, 349–362. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Current and Future Prospects for the Use of Pulsed Electric Field in the Meat Industry. Crit. Rev. Food Sci. Nutr. 2019, 59, 1660–1674. [Google Scholar] [CrossRef]
- Toepfl, S.; Siemer, C.; Heinz, V. Effect of High-Intensity Electric Field Pulses on Solid Foods. In Emerging Technologies for Food Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 147–154. [Google Scholar]
- Niu, D.; Zeng, X.A.; Ren, E.F.; Xu, F.Y.; Li, J.; Wang, M.S.; Wang, R. Review of the Application of Pulsed Electric Fields (PEF) Technology for Food Processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Benjakul, S. Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 892–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudmundsson, M.; Hafsteinsson, H. Effect of Electric Field Pulses on Microstructure of Muscle Foods and Roes. Trends Food Sci. Technol. 2001. [Google Scholar] [CrossRef]
- Shiekh, K.A.; Benjakul, S. Effect of Pulsed Electric Field Treatments on Melanosis and Quality Changes of Pacific White Shrimp during Refrigerated Storage. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Sae-leaw, T.; Benjakul, S.; Vongkamjan, K. Retardation of Melanosis and Quality Loss of Pre-Cooked Pacific White Shrimp Using Epigallocatechin Gallate with the Aid of Ultrasound. Food Control 2018, 84, 75–82. [Google Scholar] [CrossRef]
- Shiekh, K.A.; Benjakul, S.; Sae-leaw, T. Effect of Chamuang (Garcinia cowa Roxb.) Leaf Extract on Inhibition of Melanosis and Quality Changes of Pacific White Shrimp during Refrigerated Storage. Food Chem. 2019, 270, 554–561. [Google Scholar] [CrossRef]
- Ho, S.; Mittal, G.S. High Voltage Pulsed Electrical Field for Liquid Food Pasteurization. Food Rev. Int. 2000, 16, 395–434. [Google Scholar] [CrossRef]
- He, G.; Yin, Y.; Yan, X.; Yu, Q. Optimisation Extraction of Chondroitin Sulfate from Fish Bone by High Intensity Pulsed Electric Fields. Food Chem. 2014, 164, 205–210. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Aluko, R.E.; Benjakul, S. Enhanced Asian Sea Bass Skin Defatting Using Porcine Lipase with the Aid of Pulsed Electric Field Pretreatment and Vacuum Impregnation. Process Biochem. 2019, 86, 58–64. [Google Scholar] [CrossRef]
- Gulzar, S.; Benjakul, S. Impact of Pulsed Electric Field Pretreatment on Yield and Quality of Lipid Extracted from Cephalothorax of Pacific White Shrimp (Litopenaeus vannamei) by Ultrasound-Assisted Process. Int. J. Food Sci. Technol. 2020, 55, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Levkov, K.; Linzon, Y.; Mercadal, B.; Ivorra, A.; González, C.A.; Golberg, A. High-Voltage Pulsed Electric Field Laboratory Device with Asymmetric Voltage Multiplier for Marine Macroalgae Electroporation. Innov. Food Sci. Emerg. Technol. 2020, 60, 102288. [Google Scholar] [CrossRef]
- Franco, D.; Munekata, P.E.S.; Agregán, R.; Bermúdez, R.; López-Pedrouso, M.; Pateiro, M.; Lorenzo, J.M. Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants 2020, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, V.; Cruz, I.B.; Jorge, R.F.; Malcata, F.X.; Pintado, M.E.; Castro, P.M.L. Valorisation of Natural Extracts from Marine Source Focused on Marine by-Products: A Review. Food Res. Int. 2010, 43, 2221–2233. [Google Scholar] [CrossRef]
- Aouir, A.; Amiali, M.; Kirilova-Gachovska, T.; Benchabane, A.; Bitam, A. The Effect of Pulsed Electric Field (PEF) and Ultrasoud (US) Technologies on the Extraction of Phycopiliproteins from Arthrospira platensis. In Proceedings of the 2015 IEEE Canada International Humanitarian Technology Conference (IHTC2015), Ottawa, ON, Canada, 31 May–4 June 2015; pp. 1–4. [Google Scholar]
- Zhou, Y.; He, Q.; Zhou, D. Optimization Extraction of Protein from Mussel by High-Intensity Pulsed Electric Fields. J. Food Process. Preserv. 2017, 41, e12962. [Google Scholar] [CrossRef]
- Guizani, N.; Al-Busaidy, M.A.; Al-Belushi, I.M.; Mothershaw, A.; Rahman, M.S. The Effect of Storage Temperature on Histamine Production and the Freshness of Yellowfin Tuna (Thunnus albacares). Food Res. Int. 2005, 38, 215–222. [Google Scholar] [CrossRef]
- Magalhães, R.; Ferreira, V.; Brandão, T.R.S.; Palencia, R.C.; Almeida, G.; Teixeira, P. Persistent and Non-Persistent Strains of Listeria monocytogenes: A Focus on Growth Kinetics under Different Temperature, Salt, and pH Conditions and Their Sensitivity to Sanitizers. Food Microbiol. 2016, 57, 103–108. [Google Scholar] [CrossRef]
- Ferreira, V.; Barbosa, J.; Stasiewicz, M.; Vongkamjan, K.; Switt, A.M.; Hogg, T.; Gibbs, P.; Teixeira, P.; Wiedmann, M. Diverse geno- and Phenotypes of Persistent Listeria monocytogenes Isolates from Fermented Meat Sausage Production Facilities in Portugal. Appl. Environ. Microbiol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Hung, Y.C.; Brackett, R.E. Efficacy of Electrolyzed Oxidizing (EO) and Chemically Modified Water on Different Types of Foodborne Pathogens. Int. J. Food Microbiol. 2000. [Google Scholar] [CrossRef]
- Hricova, D.; Stephan, R.; Zweifel, C. Electrolyzed Water and Its Application in the Food Industry. J. Food Prot. 2008, 71, 1934–1947. [Google Scholar] [CrossRef]
- Al-Haq, M.I.; Sugiyama, J.; Isobe, S. Applications of Electrolyzed Water in Agriculture & Food Industries. Food Sci. Technol. Res. 2005, 11, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Ma, L.; Deng, S.; Xie, C.; Qiu, X. Shelf-Life of Pacific White Shrimp (Litopenaeus vannamei) as Affected by Weakly Acidic Electrolyzed Water Ice-Glazing and Modified Atmosphere Packaging. Food Control 2015, 51, 114–121. [Google Scholar] [CrossRef]
- Mahmoud, B.S.M.; Kawai, Y.; Yamazaki, K.; Miyashita, K.; Suzuki, T. Effect of Treatment with Electrolyzed NaCl Solutions and Essential Oil Compounds on the Proximate Composition, Amino Acid and Fatty Acid Composition of Carp Fillets. Food Chem. 2007. [Google Scholar] [CrossRef]
- Al-Holy, M.A.; Rasco, B.A. The Bactericidal Activity of Acidic Electrolyzed Oxidizing Water against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on Raw Fish, Chicken and Beef Surfaces. Food Control 2015, 54, 317–321. [Google Scholar] [CrossRef]
- Wang, J.J.; Lin, T.; Li, J.B.; Liao, C.; Pan, Y.J.; Zhao, Y. Effect of Acidic Electrolyzed Water Ice on Quality of Shrimp in Dark Condition. Food Control 2014, 35, 207–212. [Google Scholar] [CrossRef]
- Ozer, N.P.; Demirci, A. Electrolyzed Oxidizing Water Treatment for Decontamination of Raw Salmon Inoculated with Escherichia coli O157:H7 and Listeria monocytogenes Scott A and Response Surface Modeling. J. Food Eng. 2006. [Google Scholar] [CrossRef]
- Ovissipour, M.; Shiroodi, S.G.; Rasco, B.; Tang, J.; Sablani, S.S. Electrolyzed Water and Mild-Thermal Processing of Atlantic Salmon (Salmo salar): Reduction of Listeria monocytogenes and Changes in Protein Structure. Int. J. Food Microbiol. 2018, 276, 10–19. [Google Scholar] [CrossRef]
- Sheng, X.; Shu, D.; Li, Y.; Zhan, Z.; Yuan, X.; Liu, S.; Wu, H.; Bing, S.; Zang, Y. Combined Approach Consisting of Slightly Acidic Electrolyzed Water and Chitosan Coating to Improve the Internal Quality of Eggs during Storage. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef]
- Xuan, X.-T.; Fan, Y.-F.; Ling, J.-G.; Hu, Y.-Q.; Liu, D.-H.; Chen, S.-G.; Ye, X.-Q.; Ding, T. Preservation of Squid by Slightly Acidic Electrolyzed Water Ice. Food Control 2017, 73, 1483–1489. [Google Scholar] [CrossRef]
- Al-Qadiri, H.M.; Al-Holy, M.A.; Shiroodi, S.G.; Ovissipour, M.; Govindan, B.N.; Al-Alami, N.; Sablani, S.S.; Rasco, B. Effect of Acidic Electrolyzed Water-Induced Bacterial Inhibition and Injury in Live Clam (Venerupis philippinarum) and Mussel (Mytilus edulis). Int. J. Food Microbiol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Khazandi, M.; Deo, P.; Ferro, S.; Venter, H.; Pi, H.; Crabb, S.; Amorico, T.; Ogunniyi, A.D.; Trott, D.J. Efficacy Evaluation of a New Water Sanitizer for Increasing the Shelf Life of Southern Australian King George Whiting and Tasmanian Atlantic Salmon Fillets. Food Microbiol. 2017, 68, 51–60. [Google Scholar] [CrossRef]
- Fabrizio, K.A.; Cutter, C.N. Stability of Electrolyzed Oxidizing Water and Its Efficacy against Cell Suspensions of Salmonella typhimurium and Listeria monocytogenes. J. Food Prot. 2003, 66, 1379–1384. [Google Scholar] [CrossRef]
- McCarthy, S.; Burkhardt, W. Efficacy of Electrolyzed Oxidizing Water against Listeria monocytogenes and Morganella morganii on Conveyor Belt and Raw Fish Surfaces. Food Control 2012, 24, 214–219. [Google Scholar] [CrossRef]
- Goodburn, C.; Wallace, C.A. The Microbiological Efficacy of Decontamination Methodologies for Fresh Produce: A Review. Food Control 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Ni, L.; Cao, W.; Zheng, W.; Chen, H.; Li, B. Efficacy of Slightly Acidic Electrolyzed Water for Reduction of Foodborne Pathogens and Natural Microflora on Shell Eggs. Food Sci. Technol. Res. 2014, 20, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Ovissipour, M.; Al-Qadiri, H.M.; Sablani, S.S.; Govindan, B.N.; Al-Alami, N.; Rasco, B. Efficacy of Acidic and Alkaline Electrolyzed Water for Inactivating Escherichia coli O104:H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in Cell Suspensions. Food Control 2015, 53, 117–123. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, W.; Hung, Y.-C.; Li, B. Application of Electrolyzed Oxidizing Water in Production of Radish Sprouts to Reduce Natural Microbiota. Food Control 2016, 67, 177–182. [Google Scholar] [CrossRef]
- Liao, X.; Su, Y.; Liu, D.; Chen, S.; Hu, Y.; Ye, X.; Wang, J.; Ding, T. Application of Atmospheric Cold Plasma-Activated Water (PAW) Ice for Preservation of Shrimps (Metapenaeus ensis). Food Control 2018. [Google Scholar] [CrossRef]
- Park, H.; Hung, Y.-C.; Chung, D. Effects of Chlorine and pH on Efficacy of Electrolyzed Water for Inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int. J. Food Microbiol. 2004, 91, 13–18. [Google Scholar] [CrossRef]
- Liao, L.B.; Chen, W.M.; Xiao, X.M. The Generation and Inactivation Mechanism of Oxidation–Reduction Potential of Electrolyzed Oxidizing Water. J. Food Eng. 2007, 78, 1326–1332. [Google Scholar] [CrossRef]
- Brodowska, A.J.; Nowak, A.; Śmigielski, K. Ozone in the Food Industry: Principles of Ozone Treatment, Mechanisms of Action, and Applications: An Overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [Google Scholar] [CrossRef]
- Chen, Y.-Q.; Cheng, J.-H.; Sun, D.-W. Chemical, Physical and Physiological Quality Attributes of Fruit and Vegetables Induced by Cold Plasma Treatment: Mechanisms and Application Advances. Crit. Rev. Food Sci. Nutr. 2020, 60, 2676–2690. [Google Scholar] [CrossRef]
- Athayde, D.R.; Flores, D.R.M.; da Silva, J.S.; Genro, A.L.G.; Silva, M.S.; Klein, B.; Mello, R.; Campagnol, P.C.B.; Wagner, R.; de Menezes, C.R.; et al. Application of Electrolyzed Water for Improving Pork Meat Quality. Food Res. Int. 2017, 100, 757–763. [Google Scholar] [CrossRef]
- Ghorban Shiroodi, S.; Ovissipour, M.; Ross, C.F.; Rasco, B.A. Efficacy of Electrolyzed Oxidizing Water as a Pretreatment Method for Reducing Listeria monocytogenes Contamination in Cold-Smoked Atlantic Salmon (Salmo salar). Food Control 2016. [Google Scholar] [CrossRef]
- Bemena, L.D.; Mohamed, L.A.; Fernandes, A.M.; Lee, B.H. Applications of Bacteriocins in Food, Livestock Health and Medicine. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 924–949. [Google Scholar]
- Xu, G.; Tang, X.; Tang, S.; You, H.; Shi, H.; Gu, R. Combined Effect of Electrolyzed Oxidizing Water and Chitosan on the Microbiological, Physicochemical, and Sensory Attributes of American Shad (Alosa sapidissima) during Refrigerated Storage. Food Control 2014, 46, 397–402. [Google Scholar] [CrossRef]
- Veasey, S.; Muriana, P. Evaluation of Electrolytically-Generated Hypochlorous Acid (‘Electrolyzed Water’) for Sanitation of Meat and Meat-Contact Surfaces. Foods 2016, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Helander, I.; Nurmiaho-Lassila, E.-L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan Disrupts the Barrier Properties of the Outer Membrane of Gram-Negative Bacteria. Int. J. Food Microbiol. 2001, 71, 235–244. [Google Scholar] [CrossRef]
- Rahman, M.S.; Guizani, N.; Al-Ruzeiki, M.H.; Khalasi, A.S. Al Microflora Changes in Tuna Mince during Convection Air drv1ng. Dry. Technol. 2000, 18, 2369–2379. [Google Scholar] [CrossRef]
- Mahmoud, B.S.M.; Yamazaki, K.; Miyashita, K.; Il-Shik, S.; Dong-Suk, C.; Suzuki, T. Bacterial Microflora of Carp (Cyprinus carpio) and Its Shelf-Life Extension by Essential Oil Compounds. Food Microbiol. 2004. [Google Scholar] [CrossRef]
- Mahmoud, B.S.M.; Yamazaki, K.; Miyashita, K.; Kawai, Y.; Shin, I.S.; Suzuki, T. Preservative Effect of Combined Treatment with Electrolyzed NaCl Solutions and Essential Oil Compounds on Carp Fillets during Convectional Air-Drying. Int. J. Food Microbiol. 2006. [Google Scholar] [CrossRef]
- Kim, W.-T.; Lim, Y.-S.; Shin, I.-S.; Park, H.; Chung, D.; Suzuki, T. Use of Electrolyzed Water Ice for Preserving Freshness of Pacific Saury (Cololabis saira). J. Food Prot. 2006, 69, 2199–2204. [Google Scholar] [CrossRef]
- Anacleto, P.; Pedro, S.; Nunes, M.L.; Rosa, R.; Marques, A. Microbiological Composition of Native and Exotic Clams from Tagus Estuary: Effect of Season and Environmental Parameters. Mar. Pollut. Bull. 2013, 74, 116–124. [Google Scholar] [CrossRef]
- Ovissipour, M.; Rasco, B.; Tang, J.; Sablani, S.S. Kinetics of Quality Changes in Whole Blue Mussel (Mytilus edulis) during Pasteurization. Food Res. Int. 2013. [Google Scholar] [CrossRef]
- Xie, J.; Sun, X.; Pan, Y.; Zhao, Y. Combining Basic Electrolyzed Water Pretreatment and Mild Heat Greatly Enhanced the Efficacy of Acidic Electrolyzed Water against Vibrio parahaemolyticus on Shrimp. Food Control 2012, 23, 320–324. [Google Scholar] [CrossRef]
- Lin, T.; Wang, J.J.; Li, J.B.; Liao, C.; Pan, Y.J.; Zhao, Y. Use of Acidic Electrolyzed Water Ice for Preserving the Quality of Shrimp. J. Agric. Food Chem. 2013, 61, 8695–8702. [Google Scholar] [CrossRef]
- Li, P.; Chen, Z.; Tan, M.; Mei, J.; Xie, J. Evaluation of Weakly Acidic Electrolyzed Water and Modified Atmosphere Packaging on the Shelf Life and Quality of Farmed Puffer Fish (Takifugu obscurus) during Cold Storage. J. Food Saf. 2020, 40. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.J.; Sun, X.H.; Pan, Y.J.; Zhao, Y. Preliminary Mechanism of Acidic Electrolyzed Water Ice on Improving the Quality and Safety of Shrimp. Food Chem. 2015, 176, 333–341. [Google Scholar] [CrossRef]
- Lin, H.-M.; Hung, Y.-C.; Deng, S.-G. Effect of Partial Replacement of Polyphosphate with Alkaline Electrolyzed Water (AEW) on the Quality of Catfish Fillets. Food Control 2020, 112, 107117. [Google Scholar] [CrossRef]
Products | Treatment Conditions | Target Microorganisms | References |
---|---|---|---|
Sea bass (Dicentrarchus labrax) fillets | 100, 250, and 400 MPa/0, 5, 15, and 30 min/6 °C | Mesophilic aerobic bacteria | [47] |
Sea bass (D. labrax) fillets | 600 MPa/5 min/25 °C | Total aerobic viable count, Pseudomonas spp., Brochothrix thermosphacta, yeasts and molds, Enterobacteriaceae spp., H2S-producing bacteria, and Lactobacilli | [48] |
European catfish (Silurus glanis) fillets | 200, 400, and 600/1 and 5 min/room temperature | L. monocytogenes, Escherichia coli and Mesophilic aerobic counts | [49] |
Mild smoked rainbow trout (Oncorhynchus mykiss) fillets | 200, 400, and 600/1 and 5 min/room temperature | L. monocytogenes, E. coli, and Mesophilic aerobic counts | [49] |
Smoked salmon (Salmo salar) minced | Pressurization at low temperature *: 207 MPa/23 and 60 min/−5 to 6 °C * Pressurization at sub-zero temperature *: 207 MPa/60 min/−29 °C Freezing followed by pressurization **: 207 MPa/23 min/−29 °C | L. innocua | [36] |
Cold-smoked sardine (Sardina pilchardus) | 300 MPa/15 min/20 °C | Total aerobic viable count, H2S-producing bacteria, and Luminescent bacteria, Enterobacteriaceae spp. | [50] |
Cold-smoked salmon (S. salar) | 400, 500, 600, 700, 800, and 900 MPa/10, 20, 30, and 60 s/room temperature | Total viable psychrotrophic count and Lactic acid bacteria L. innocua | [51] |
Cold-Smoked Dolphinfish (Coryphaena hippurus) | 300 MPa/15 min/20 °C | Total aerobic viable count, H2S-producing bacteria, Luminescent bacteria, Enterobacteriaceae spp. L. monocytogenes | [52] |
Coho Salmon (O. kisutch) | 135, 170, and 200 MPa/30 s | Total aerobic viable count, mesophilic and psychrophilic aerobic counts, Pseudomonas spp., H2S-producing bacteria (mainly Shewanella putrefaciens) | [53] |
Black tiger shrimp (P. monodon) | 300–600 MPa/30–50 °C/0–15 min | Staphylococcus aureus | [54] |
Black tiger shrimp (Penaeus monodon) | 300, 400, 500, and 600 MPa, 3, 6, 9, 12, and 15 min/room temperature (27 °C) | Mesophilic aerobic bacteria and total viable psychrotrophic count E. coli and S. aureus | [55] |
Frozen cooked pink shrimps (Pandalus jordani) | 250 MPa/0.5, 1.5, 3, and 10 min/−30 °C | L. monocytogenes | [56] |
Fresh, shucked raw lobster (Homarus americanus) tails | 150 and 350 MPa/10 min/4 °C | Total bacterial count and Lactic acid bacteria | [57] |
Oysters homogenates | 200, 250, and 300 MPa/5 and 10 min/1.5, 5, and 20 °C | Vibrio parahaemolyticus | [58] |
Oysters (Crassostrea virginica) | 250 MPa/5 min, 300 MPa/2 min, and 350 MPa/1 min/−2, 1, 5, 10, 20, 30, 40, and 45 °C 5-log reduction parameters: 250, 300, 350, 400, and 450 MPa/2 min/1, 20, 30, and 40 °C | V. parahaemolyticus | [31] |
Whole Gold Band Oysters *** | 250 to 400 MPa/1 to 3 min/Room temperature | Total aerobic bacterial counts, presumptive Vibrio spp. count (PV), and presumptive V. vulnificus count (PVv) | [59] |
Cooked oysters (C. gigas) | 250 MPa/2, 5, 8, and 10 min and 300 MPa/0, 2, 5, 8, and 10 min/4 °C | Total aerobic counts, total anaerobic counts, and Coliforms | [60] |
Four types of shellfish:
| 300, 400, 500, and 600 MPa, 2 min/20 °C | Total aerobic viable count, Psychrotrophic count, Pseudomonas spp., and Coliforms | [61] |
Abalone (Haliotis rufescens) | 500 MPa/8 min and 550 MPa/3 and 5 min/room temperature | Total aerobic viable count, mesophilic and psychrophilic aerobic counts, Pseudomonas spp., H2S-producing bacteria (mainly S. putrefaciens) | [53] |
Six species of fresh edible seaweeds:
| 400 and 600 MPa/5 min/room temperature | Total viable counts and heterotrophic marine bacteria | [62] |
Pacific oysters (C. gigas) | 300 MPa/2 min/20 °C | Total viable counts and heterotrophic marine bacteria | [63] |
Products | Treatment Conditions | Combination of Methods | Mechanical Effects | Chemical/Biochemical Effects | References |
---|---|---|---|---|---|
Red seabream (Pagrus major) fillets | 40 kHz, 200 W, 10 °C | Ultrasound and thawing at 0 °C under vacuum (UVT) | No free water changes and improved physicochemical properties of proteins, actin had better thermal stability | - | [119] |
Cod (Gadus morhua) fillets |
| Ultrasound and hydration medium’s pH (from 8.5 to 10.5) | 2.9 W/kg: produced the highest increments in WG (18.6%), reducing hydration time by 33% US+pH 8.5: 1-day shorter hydration time | US+pH 8.5: improved microbial quality | [120] |
Salted cod (G. morhua) | 21.9 kHz, 20.5 kW/m3, 90 W, 1.2 m/s, −10 °C, 0, 10, and 20 °C | Ultrasound and low-temperature air drying (US+AIR) | US+AIR: softer texture, higher rehydration capacity, and color dependent on the drying temperature | - | [121] |
Brown crab (Cancer pagurus) whole cooked | 900 W ultrasonic bath, 45 min, 75 °C | Ultrasound and heat treatment at 75 °C, in water containing or not 5.0% NaCl (w/v) | Faster (15%) cooking time, while F value remained the same Increased mass transfer-dirt removal (cleaner crabs) Enhanced salt extraction (reduced salt content in meat) | F707.5 = 2 min and greater microbial reduction | [122] |
Shrimps (Litopenaeus vannamei, whiteleg) | 20 kHz, 400 W, 0, 5, 10, 15, 20 min, room temperature | Ultrasound and freeze drying at −20 °C | Allergenicity decreased with increasing treatment time (tropomyosin reduced 76% after 20 min of US treatment) Total antioxidant capacity strengthened | - | [123] |
Sea cucumber (Stichopus japonicus) | 25 kHz, 160, 240, and 320 W, 0, 15, 30, and 45 min, 24 °C | Ultrasound (US) * and microwave freeze drying (MFD) | US: reduced the time needed for MFD by 2 h US: improved the chewiness property and the rehydration capability without significant deformation | - | [124] |
Types of EW | pH | ORP (mV) | ACC (mg/L) | Dilute Solution | References |
---|---|---|---|---|---|
AEW | 2.22 | 1137 | Approx. 41 | NaCl 0.1% | [195] |
2.30 | >1100 | 38 | KCl 0.1% | [196] | |
AEWice 1 | 2.64 | 1124 | 26 | NaCl 0.1% | [197] |
AlEW 2 | 11.40 | −795 | NT | NaCl 12.0% | [198] |
NEW | 6.80 | 786 | 60 | NT | [199] |
SAEW | 6.37 | 980 | 30 | NaCl 0.5% and HCl 0.05% | [200] |
SAEWice 1 | 6.48 | 882 | 25 | NaCl 0.2% and HCl 0.04% | [201] |
WAEW 1 | 3.55 | 950 | 10 | NaCl 40 mg/L | [202] |
ECAS4 3 | 7.00 | 850 | 300 | NaCl 0.4–0.5% | [203] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekonomou, S.I.; Boziaris, I.S. Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. Appl. Sci. 2021, 11, 833. https://doi.org/10.3390/app11020833
Ekonomou SI, Boziaris IS. Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. Applied Sciences. 2021; 11(2):833. https://doi.org/10.3390/app11020833
Chicago/Turabian StyleEkonomou, Sotirios I., and Ioannis S. Boziaris. 2021. "Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood" Applied Sciences 11, no. 2: 833. https://doi.org/10.3390/app11020833
APA StyleEkonomou, S. I., & Boziaris, I. S. (2021). Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. Applied Sciences, 11(2), 833. https://doi.org/10.3390/app11020833