A Proposal for a Simple Method for Determining the Concrete Slab Width of Composite Beam-to-Column Joints
Abstract
:1. Introduction
2. Shear Lag and Effective Flange Width of a Composite Beam
3. Provisions for Effective Flange Width of the Composite Beam in Current Design Specifications
3.1. EN 1994-1-1:2004
- (a)
- When the global elastic analysis is used, a constant effective width may be assumed over the whole of each span. This value may be taken as the value beff, 1 at mid-span for a span supported at both ends, or the value beff, 2 at the support for a cantilever.
- (b)
- At mid-span or internal support, the total effective width beff, see Figure 4, may be determined by the following equation:
- (c)
- The effective width at end support may be determined by the following equation:
- (d)
- The distribution of the effective width between supports and mid-span regions may be assumed to be as shown in Figure 4.
- (e)
- Where the bending moment distribution is influenced by the resistance or the rotational stiffness of a joint in buildings should be considered in the determination of the length Le.
- (f)
- For analysis of building structures, b0 may be taken as zero and measured from the center of the web.
3.2. AS/NZS 2327:2017
3.3. GB50017-2017
3.4. ANSI/AISC 360-16
- (a)
- one-eighth of the beam span, center-to-center of the supports;
- (b)
- one-half the distance to the centerline of the adjacent beam; or
- (c)
- the distance to the edge of the slab.
4. Comparison of Design Specification Provisions
4.1. Comparison of Basic Provisions
4.2. Comparison of the Equivalent Span of Continuous Composite Beams
4.3. Numerical Comparison of Provisions at the Positive and Negative Bending Moment Region
5. Design Suggestions of the Slab Width of Composite Joint Specimens
5.1. Review of Previous Studies on the Effective Slab Width of Composite Joints
5.2. Recommend Slab Width for Composite Joint Specimens
6. Example of Verification of Recommended Equations
6.1. The Composite Joints of SMRFs
6.2. The Details of the Base Model of a Composite Joint in the Actual Project
6.3. FEM Analysis Method
6.4. Ultimate State and the Calculation Method of Effective Slab Width
6.5. ABAQUS Analysis Results and Comparison
6.6. The Influence of Slab Thickness on the Effective Width
7. Conclusions
- Each specification has the same organization describing the effective flange width—basic formulation plus equivalent span length—and they are more or less the same in these two aspects;
- In the sagging moment region, compared to the Eurocode and Oceanian specifications and the Chinese specifications, ANSI/AISC 360 underestimates the slab’s effective width value within the general SMRF size range (S0/L ≤ 0.5). In contrast, in all specifications, the latest version of GB 50,017 in China is the most conservative for the slab’s effective width within the general SMRF size range (S0/L ≤ 0.5);
- For the composite beam hogging moment region, in the range of S0/L > 0.5, the U.S. specifications control the slab’s effective width;
- The calculation results of Equation (7) are very inclusive and completely cover the slab’s effective width obtained by the ABAQUS analysis. Therefore, Equation (7) is feasible and safe to design composite joint specimens of SMRFs for experimental research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Leon, D.; Reyes, A.; Yu, C. Probabilistic assessment of connections for steel buildings on seismic zones. J. Constr. Steel Res. 2013, 88, 15–20. [Google Scholar] [CrossRef]
- Memari, M.; Mahmoud, H. Performance of steel moment resisting frames with RBS connections under fire loading. Eng. Struct. 2014, 75, 126–138. [Google Scholar] [CrossRef]
- Morshedi, M.A.; Dolatshahi, K.M.; Maleki, S. Double reduced beam section connection. J. Constr. Steel Res. 2017, 138, 283–297. [Google Scholar] [CrossRef]
- Kim, Y.J.; Oh, S.H.; Moon, T.S. Seismic behavior and retrofit of steel moment connections considering slab effects. Eng. Struct. 2004, 26, 1993–2005. [Google Scholar] [CrossRef]
- Bursi, O.S.; Gramola, G. Behavior of composite substructures with full and partial shear connection under quasi-static cyclic and pseudo-dynamic displacements. Mater. Struct. 2000, 33, 154–163. [Google Scholar] [CrossRef]
- Bursi, O.S.; Sun, F.F.; Postal, S. Non-linear analysis of steel-concrete composite frames with full and partial shear connection subjected to seismic loads. J. Constr. Steel Res. 2005, 61, 67–92. [Google Scholar] [CrossRef]
- Du Plessis, D.P.; Daniels, J.H. Strength of Composite Beam to Column Connections; Fritz Laboratory Reports; Lehigh University: Bethlehem, PA, USA, 1973. [Google Scholar]
- Lee, S.J.; Lu, L.W. Cyclic tests of full-scale composite joint subassemblages. J. Struct. Eng. 1989, 115, 1977–1998. [Google Scholar] [CrossRef] [Green Version]
- Uang, C.M.; Yu Kent, Q.S.; Noel, S.; Gross, J. Cyclic testing of steel moment connections rehabilitated with RBS or welded haunch. J. Struct. Eng. 2000, 126, 57–68. [Google Scholar] [CrossRef]
- Chen, S.J.; Chao, Y.C. Effect of composite action on seismic performance of steel moment connections with reduced beam sections. J. Constr. Steel Res. 2011, 57, 417–434. [Google Scholar] [CrossRef]
- Nakashima, M.; Matsumiya, T.; Suita, K.; Zhou, F. Full-scale test of composite frame under large cyclic loading. J. Struct. Eng. 2007, 133, 297–304. [Google Scholar] [CrossRef]
- EN 1994-1-1:2004. Eurocode 4: Design of Composite Steel and Concrete Structures Part 1-1: General Rules and Rules for Buildings (Incorporating Corrigendum April 2009); The European Union Per Regulation: Brussels, Belgium, 2009. [Google Scholar]
- AS/NZS 2327:2017. Composite Structures—Composite Steel-Concrete Construction in Buildings; Joint Technical Committee BD-032, Composite Construction: Sydney, Australia, 2017. [Google Scholar]
- Sedlacek, G.; Bild, S. Simplified method for the determination of the effective width due to shear lag effects. J. Constr. Steel Res. 1993, 24, 155–182. [Google Scholar] [CrossRef]
- Dezi, L.; Gara, F.; Leoni, G.; Tarantino, A.M. Time-dependent analysis of shear-lag effect in composite beams. J. Eng. Mech. 2001, 127, 71–79. [Google Scholar] [CrossRef]
- Ayensa, A.; Oller, E.; Beltrán, B.; Ibarz, E.; Marí, A.; Gracia, L. Influence of the flanges width and thickness on the shear strength of reinforced concrete beams with T-shaped cross section. Eng. Struct. 2019, 188, 506–518. [Google Scholar] [CrossRef]
- Khalil, A.E.; Etman, E.; Atta, A.; Baraghith, A.; Behiry, R. The Effective Width in Shear Design of Wide-shallow Beams: A Comparative Study. KSCE J. Civ. Eng. 2019, 23, 1670–1681. [Google Scholar] [CrossRef]
- Ahn, I.S.; Chiewanichakorn, M.; Chen, S.S.; Aref, A.J. Effective flange width provisions for composite steel bridges. Eng. Struct. 2004, 26, 1843–1851. [Google Scholar] [CrossRef]
- Nie, J.G.; Tao, M.X. Slab spatial composite effect in composite frame systems. I: Effective width for ultimate loading capacity. Eng. Struct. 2012, 38, 171–184. [Google Scholar] [CrossRef]
- Lasheen, M.; Shaat, A.; Khalil, A. Numerical evaluation for the effective slab width of steel-concrete composite beams. J. Constr. Steel Res. 2018, 148, 124–137. [Google Scholar] [CrossRef]
- Salama, T.; Nassif, H.H. Effective Flange Width for Composite Steel Beams. The J. Eng. Res. 2011, 8, 28–43. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, M.H.; Mohammed, S.N. The Effective Width in Composite Steel Concrete Beams at Ultimate Loads. J. Eng. 2014, 20, 1–17. [Google Scholar]
- Alsarraf, M.A.A.; EI Din, H.S. Effects of Web Openings on the Effective Slab Widths in Composite Steel Beams. Int. J. Eng. Technol. 2016, 8, 6–10. [Google Scholar] [CrossRef] [Green Version]
- GB50017-2017. Standard for Design of Steel Structures; China Plan Press: Beijing, China, 2017. [Google Scholar]
- ANSI/AISC 341-16. Seismic Provisions for Structural Steel Buildings (Revised June 2018); American Institute of Steel Construction: Chicago, IL, USA, 2018. [Google Scholar]
- ANSI/AISC 360-16. Specification for Structural Steel Buildings (Revised June 2019); American Institute of Steel Construction: Chicago, IL, USA, 2019. [Google Scholar]
- AISC-LRFD. Load and Resistance Factor Design Specification for Structural Steel Buildings; American Institute of Steel Construction: Chicago, IL, USA, 1999. [Google Scholar]
- Amadio, C.; Fedrigo, C.; Fragiacomo, M.; Macorini, L. Experimental evaluation of effective width in steel-concrete composite beams. J. Constr. Steel Res. 2004, 60, 199–220. [Google Scholar] [CrossRef]
- Civjan, S.A.; Engelhard, M.D.; Gross, J.L. Slab effects in SMRF retrofit connection tests. J. Struct. Eng. 2001, 127, 230–237. [Google Scholar] [CrossRef]
- Tagawa, Y.; Kato, B.; Aoki, H. Behavior of composite beams in steel frame under hysteretic loading. J. Struct. Eng. 1989, 115, 2029–2045. [Google Scholar] [CrossRef]
- Lu, L.F.; Xu, Y.L.; Zheng, H.X.; Lim, J.B.P. Cyclic response and design procedure of a weak-axis cover-plate moment connection. Steel Compos. Struct. 2018, 26, 139–150. [Google Scholar]
- Xu, Y.L.; Lu, L.F.; Zheng, H. Finite element analysis of weak-axis composite connections under cyclic loading. Int. J. Steel Struct. 2019, 19, 82–95. [Google Scholar] [CrossRef]
- Lu, L.F.; Xu, Y.L.; Zheng, H. Investigation of composite action on seismic performance of weak-axis column bending connections. J. Constr. Steel Res. 2017, 129, 286–300. [Google Scholar] [CrossRef]
- Lu, L.F.; Xu, Y.L.; Lim, J.B.P. Mechanical performance of a new I-section weak-axis column bending connection. Steel Compos. Struct. 2018, 26, 31–44. [Google Scholar]
- Nie, J.G.; Tian, Y.; Cai, C.S. Effective width of steel-concrete composite beam at ultimate strength state. Eng. Struct. 2008, 30, 1396–1407. [Google Scholar] [CrossRef]
- GB50011-2010. Code for Seismic Design of Buildings; China Architecture and Building Press: Beijing, China, 2010. [Google Scholar]
- Amadio, C.; Fragiacomo, M. Effective width evaluation for steel-concrete composite beams. J. Constr. Steel Res. 2002, 58, 373–388. [Google Scholar] [CrossRef]
- GB 50017-2003. Code for Design of Steel Structure; China Plan Press: Beijing, China, 2003. [Google Scholar]
be Provisions | EN 1994-1-1 | AS/NZS 2327 | GB50017 | ANSI/AISC 360 |
---|---|---|---|---|
Expressed as one-sided | Y | Y | N | Y |
Distinguishes exterior vs. interior beam | N | N | Y | N |
Distinguishes M(+) region from M(−) region | Y | Y | Y | N |
Distinguishes I girder from the other beam | N | Y | N | N |
Distinguishes strength (ultimate) vs. service | Y | Y | Y | N |
Considers the type of slab | N | Y | N | N |
Considers the opening or cut-out of the slab | Y | Y | N | N |
Uses equivalent beam span | Y | Y | Y | N |
Value modified for concrete cracking | Y | Y | N | N |
Specification | S0/L | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 3/4 | 2/3 | 1/2 | 1/2.5 | 1/3 | 1/4 | 1/5 | 1/6 | ||
EN1994-1-1 AS/NZS 2327 | Mid-span | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.177 |
End support | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.163 | 0.144 | |
GB50017 | Mid-span | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.177 |
End support | 0.277 | 0.277 | 0.277 | 0.277 | 0.277 | 0.277 | 0.26 | 0.21 | 0.177 | |
AISC360 | Mid-span | 0.25 | 0.25 | 0.25 | 0.25 | 0.2 | 0.167 | 0.125 | 0.1 | 0.083 |
End support | 0.25 | 0.25 | 0.25 | 0.25 | 0.2 | 0.167 | 0.125 | 0.1 | 0.083 |
Specification | S0/L | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 3/4 | 2/3 | 1/2 | 1/2.5 | 1/3 | 1/4 | 1/5 | 1/6 | ||
EN1994-1-1 AS/NZS 2327 | L1 = L3 = L2 = L | 0.135 | 0.135 | 0.135 | 0.135 | 0.135 | 0.135 | 0.135 | 0.135 | 0.135 |
L1 = L3 = 1.5L2 = 1.5L | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 | |
GB50017 | L1 = L3 = L2 = L | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 |
L1 = L3 = 1.5L2 = 1.5L | 0.177 | 0.177 | 0.177 | 0.177 | 0.177 | 0.177 | 0.177 | 0.177 | 0.177 | |
AISC360 | L1 = L3 = L2 = L | 0.25 | 0.25 | 0.25 | 0.25 | 0.2 | 0.167 | 0.125 | 0.1 | 0.083 |
L1 = L3 = 1.5L2 = 1.5L | 0.375 | 0.375 | 0.333 | 0.25 | 0.2 | 0.167 | 0.125 | 0.1 | 0.083 |
Specimen | Design Conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L = 7200 mm S0 = 1950 mm | L = 7800 mm S0 = 1950 mm | L = 8400 mm S0 = 1950 mm | L = 9600 mm S0 = 1950 mm | L = 10,800 mm S0 = 1950 mm | ||||||
Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | |
ABAQUS: be/mm | 488 | 1407 | 500 | 1414 | 520 | 1423 | 529 | 1485 | 528 | 1490 |
Equation (7): bs/mm | 1869 | 1950 | 1950 | 1950 | 1950 | |||||
Equation (8): be/mm | 1818 | 1950 | 1950 | 1950 | 1950 |
Specimen | Design Conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L = 7800 mm S0 = 1000 mm | L = 7800 mm S0 = 1500 mm | L = 7800 mm S0 = 1950 mm | L = 7800 mm S0 = 2500 mm | L = 7800 mm S0 = 3000 mm | ||||||
Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | |
ABAQUS be/mm | 462 | 707 | 473 | 1064 | 500 | 1414 | 553 | 1658 | 567 | 1949 |
Equation (7) bs/mm | 1000 | 1500 | 1950 | 2147 | 2192 | |||||
Equation (8): be/mm | 1000 | 1500 | 1950 | 2300 | 2712 |
Specimen | Design conditions | |||||||
---|---|---|---|---|---|---|---|---|
L = 7800 mm S0 = 1950 mm hc = 100 mm | L = 7800 mm S0 = 1950 mm hc = 120 mm | L = 7800 mm S0 = 1950 mm hc = 150 mm | L = 7800 mm S0 = 1950 mm hc = 180 mm | |||||
Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | Sagging | Hogging | |
ABAQUS: be/mm | 500 | 1414 | 481 | 1395 | 466 | 1335 | 464 | 1334 |
Equation (7): bs/mm | 1869 | 1950 | 1950 | 1950 | ||||
Equation (8): be/mm | 1818 | 1950 | 1950 | 1950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Wang, D.; Ding, K.; Yan, H.; Hao, H. A Proposal for a Simple Method for Determining the Concrete Slab Width of Composite Beam-to-Column Joints. Appl. Sci. 2021, 11, 9613. https://doi.org/10.3390/app11209613
Lu L, Wang D, Ding K, Yan H, Hao H. A Proposal for a Simple Method for Determining the Concrete Slab Width of Composite Beam-to-Column Joints. Applied Sciences. 2021; 11(20):9613. https://doi.org/10.3390/app11209613
Chicago/Turabian StyleLu, Linfeng, Di Wang, Kai Ding, Hongwei Yan, and Hanlin Hao. 2021. "A Proposal for a Simple Method for Determining the Concrete Slab Width of Composite Beam-to-Column Joints" Applied Sciences 11, no. 20: 9613. https://doi.org/10.3390/app11209613
APA StyleLu, L., Wang, D., Ding, K., Yan, H., & Hao, H. (2021). A Proposal for a Simple Method for Determining the Concrete Slab Width of Composite Beam-to-Column Joints. Applied Sciences, 11(20), 9613. https://doi.org/10.3390/app11209613