A Survey of GIS and IoT Integration: Applications and Architecture
Abstract
:1. Introduction
1.1. Internet of Things
1.2. GIS
1.3. Motivation
- (i)
- What are the capabilities offered by systems benefiting from just IoT or GIS in each application category?
- (ii)
- What are the capabilities offered by using IoT and GIS simultaneously?
- (iii)
- How GIS can be employed in IoT architecture?
2. Materials and Methods
3. GIS and IoT Integration Use Cases
3.1. Urban Infrastructure
3.2. Transportation
3.3. Disaster Management
3.4. Environmental Monitoring
3.5. Agriculture
3.6. Utilities
3.7. Healthcare
4. Integrated IoT and GIS Architectures
4.1. IoT Architecture and IoT Elements
4.2. GIS Components and Elements
4.3. GIS and IoT Integration Architecture
4.3.1. GIS in Processing Layer
Data-Related
Visualization
Analysis (Other Functionalities of GIS)
4.3.2. GIS in Application Layer
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Vermesan, O.; Friess, P.; Guillemin, P.; Gusmeroli, S.; Sundmaeker, H.; Bassi, A.; Jubert, I.S.; Mazura, M.; Harrison, M.; Eisenhauer, M. Internet of things strategic research roadmap. Internet Things Glob. Technol. Soc. Trends 2011, 1, 9–52. [Google Scholar]
- Peña-López, I. ITU Internet Report 2005: The Internet of Things; International Telecommunication Union (ITU): Geneva, Switzerland, 2005. [Google Scholar]
- Madakam, S.; Lake, V.; Lake, V.; Lake, V. Internet of Things (IoT): A literature review. J. Comput. Commun. 2015, 3, 164. [Google Scholar] [CrossRef] [Green Version]
- Al-Ali, A. Role of internet of things in the smart grid technology. J. Comput. Commun. 2015, 3, 229. [Google Scholar] [CrossRef] [Green Version]
- Dominikus, S.; Schmidt, J.-M. Connecting Passive RFID Tags to the Internet of Things. In Proceedings of the Interconnecting Smart Objects with the Internet Workshop, Prague, Czech Republic, 25 March 2011. [Google Scholar]
- Sami, N.; Mufti, T.; Sohail, S.S.; Siddiqui, J.; Kumar, D. Future Internet of Things (IOT) from Cloud Perspective: Aspects, Applications and Challenges. In Internet of Things (IoT); Springer: New York, NY, USA, 2020; pp. 515–532. [Google Scholar]
- Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-Based Smart Cities: A Survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar]
- Pontes, P.M.; Lima, B.; Faria, J.P. Test Patterns for IoT. In Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation, Lake Buena Vista, FL, USA, 5 November 2018; pp. 63–66. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Faiz, S.; Krichen, S. Geographical Information Systems and Spatial Optimization; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Church, R.L. Geographical information systems and location science. Comput. Oper. Res. 2002, 29, 541–562. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- DiBiase, D.; DeMers, M.; Johnson, A.; Kemp, K.; Luck, A.T.; Plewe, B.; Wentz, E. Introducing the first edition of geographic information science and technology body of knowledge. Cartogr. Geogr. Inf. Sci. 2007, 34, 113–120. [Google Scholar] [CrossRef]
- Dold, J.; Groopman, J. The future of geospatial intelligence. Geo-Spat. Inf. Sci. 2017, 20, 151–162. [Google Scholar] [CrossRef]
- GIS Geography. 1000 GIS Applications & Uses–How GIS Is Changing the World. Available online: https://gisgeography.com/gis-applications-uses/ (accessed on 11 December 2020).
- Shekhar, S.; Xiong, H. Encyclopedia of GIS; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Bodei, C.; Degano, P.; Ferrari, G.-L.; Galletta, L. Where do your IoT ingredients come from? In Coordination Models and Languages, Proceedings of the International Conference on Coordination Languages and Models, Heraklion, Greece, 6–9 June 2016; Springer: Cham, Switzerland, 2016; pp. 35–50. [Google Scholar]
- Saračević, M.; Plojović, Š.; Bušatlić, S. IoT Application for Smart Cities Data Storage and Processing Based on Triangulation Method. In Internet of Things (IoT); Springer: New York, NY, USA, 2020; pp. 317–334. [Google Scholar]
- Zhou, Q.; Zhang, J. Internet of Things and Geography-Review and Prospect. In Proceedings of the 2011 International Conference on Multimedia and Signal Processing, Guilin, China, 14–15 May 2011; IEEE: New York, NY, USA, 2011; pp. 47–51. [Google Scholar]
- Lopez, D.A.R.; Lopez, J.R.R.; Prieto, M.A.Z.; Quinde, L.D.S. Towards a Method for the Integration of IoT and GIS Applications Deployed on Cloud Platforms. In Proceedings of the 2017 International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, 23–25 November 2017; IEEE: New York, NY, USA, 2017; pp. 353–360. [Google Scholar]
- Ndzabandzaba, C. Participatory Geographic Information System (PGIS): A Discourse toward a Solution to Traditional GIS Challenges. In Handbook of the Changing World Language Map; Springer: New York, NY, USA, 2019; pp. 3825–3835. [Google Scholar]
- Gold, C.M. What is GIS and What is Not? Trans. GIS 2006, 10, 505–519. [Google Scholar] [CrossRef]
- Cao, H.; Wachowicz, M. The design of an IoT-GIS platform for performing automated analytical tasks. Comput. Environ. Urban Syst. 2019, 74, 23–40. [Google Scholar] [CrossRef]
- Miloudi, L.; Rezeg, K. Leveraging the Power of Integrated Solutions of IoT and GIS. In Proceedings of the 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa, Algeria, 24–25 October 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Mbuh, M.; Metzger, P.; Brandt, P.; Fika, K.; Slinkey, M. Application of real-time GIS analytics to support spatial intelligent decision-making in the era of big data for smart cities. EAI Endorsed Trans. Smart Cities 2020, 4, e3. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Chen, B.; Liu, Q.; Fang, Y. A precision agriculture management system based on Internet of Things and WebGIS. In Proceedings of the 2013 21st International Conference on Geoinformatics, Kaifeng, China, 20–22 June 2013; IEEE: New York, NY, USA, 2013. [Google Scholar]
- Fang, S.; Da Xu, L.; Zhu, Y.; Ahati, J.; Pei, H.; Yan, J.; Liu, Z. An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans. Ind. Inform. 2014, 10, 1596–1605. [Google Scholar] [CrossRef]
- Lwin, K.K.; Sekimoto, Y.; Takeuchi, W.; Zettsu, K. City Geospatial Dashboard: IoT and Big Data Analytics for Geospatial Solutions Provider in Disaster Management. In Proceedings of the 2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Paris, France, 18–20 December 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Patti, E.; Acquaviva, A. IoT platform for Smart Cities: Requirements and implementation case studies. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Cheng, Y.; Zhao, L. Application and research of GIS intelligent environmental protection Internet of things system construction technology. In Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 20–22 December 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Wang, L.-q.; Jia, J.-w. A Design of Environmental Quality Management Information System Based on IOT and GIS. Environ. Sci. Surv. 2012, 3, 1–2. [Google Scholar]
- Peng, S.; Su, G.; Chen, J.; Du, P. Design of an IoT-BIM-GIS based risk management system for hospital basic operation. In Proceedings of the 2017 IEEE Symposium on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 6–9 April 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Cisco. Cisco IoT Solutions. Available online: https://www.cisco.com/c/en/us/solutions/internet-of-things/overview.html (accessed on 11 December 2020).
- Mittal, S.; Chadchan, J.; Mishra, S.K. Review of concepts, tools and indices for the assessment of urban quality of life. Soc. Indic. Res. 2020, 149, 187–214. [Google Scholar] [CrossRef]
- Fazio, M.; Paone, M.; Puliafito, A.; Villari, M. Heterogeneous sensors become homogeneous things in smart cities. In Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, Italy, 4–6 July 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Garau, C.; Pavan, V.M. Evaluating urban quality: Indicators and assessment tools for smart sustainable cities. Sustainability 2018, 10, 575. [Google Scholar] [CrossRef] [Green Version]
- Balakrishna, C. Enabling technologies for smart city services and applications. In Proceedings of the 2012 Sixth International Conference on Next Generation Mobile Applications, Services and Technologies, Paris, France, 12–14 September 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Pazhuhan, M.; Shahraki, S.Z.; Kaveerad, N.; Cividino, S.; Clemente, M.; Salvati, L. Factors underlying life quality in urban contexts: Evidence from an industrial city (Arak, Iran). Sustainability 2020, 12, 2274. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimzadeh, I.; Shahraki, A.A.; Shahnaz, A.A.; Myandoab, A.M. Progressing urban development and life quality simultaneously. City Cult. Soc. 2016, 7, 186–193. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Caselli, R.J.; Berry, L.L. A roadmap for improving healthcare service quality. J. Healthc. Manag. 2011, 56, 385–402. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Malekloo, A. Smart parking in IoT-enabled cities: A survey. Sustain. Cities Soc. 2019, 49, 101608. [Google Scholar] [CrossRef]
- Avatefipour, O.; Sadry, F. Traffic management system using IoT technology—A comparative review. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Medina, C.A.; Pérez, M.R.; Trujillo, L.C. IoT paradigm into the smart city vision: A survey. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Islam, N.; Marinakis, Y.; Majadillas, M.A.; Fink, M.; Walsh, S.T. Here there be dragons, a pre-roadmap construct for IoT service infrastructure. Technol. Forecast. Soc. Chang. 2020, 155, 119073. [Google Scholar] [CrossRef]
- Park, E.; Del Pobil, A.P.; Kwon, S.J. The role of Internet of Things (IoT) in smart cities: Technology roadmap-oriented approaches. Sustainability 2018, 10, 1388. [Google Scholar] [CrossRef] [Green Version]
- Palve, S.N. Application of gis in infrastructure project management. Int. J. Struct. Civ. Eng. Res. 2013, 2, 110–122. [Google Scholar]
- Shahrour, I. Use of GIS in smart city projects. GIM Int. Worldw. Mag. Geomat. 2018, 32, 21–23. [Google Scholar]
- Longley, P. GIS and the development of digital urban infrastructure. Environ. Plan. B Plan. Des. 1998, 25, 53–56. [Google Scholar] [CrossRef]
- Shaw, S.-L. GIS for Transportation. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 1–9. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Morrison, A.; Shearer, J. Using desktop GIS for the investigation of accessibility by public transport: An isochrone approach. Int. J. Geogr. Inf. Sci. 2000, 14, 85–104. [Google Scholar] [CrossRef]
- Lu, X. Develop web gis based intelligent transportation application systems with web service technology. In Proceedings of the 2006 6th International Conference on ITS Telecommunications, Chengdu, China, 21–23 June 2006; IEEE: New York, NY, USA, 2006. [Google Scholar]
- Soni, N.; Saraswat, J. A review of IoT devices for traffic management system. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Xiong, Z.; Sheng, H.; Rong, W.; Cooper, D.E. Intelligent transportation systems for smart cities: A progress review. Sci. China Inf. Sci. 2012, 55, 2908–2914. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Zhou, W.; Lu, Y.; Sun, N. Prediction of network traffic of smart cities based on DE-BP neural network. IEEE Access 2019, 7, 55807–55816. [Google Scholar] [CrossRef]
- Djahel, S.; Salehie, M.; Tal, I.; Jamshidi, P. Adaptive traffic management for secure and efficient emergency services in smart cities. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), San Diego, CA, USA, 18–22 March 2013; IEEE: New York, NY, USA, 2013. [Google Scholar]
- Goodchild, M.F. GIS and transportation: Status and challenges. GeoInformatica 2000, 4, 127–139. [Google Scholar] [CrossRef]
- Miller, H.J.; Wu, Y.-H. GIS software for measuring space-time accessibility in transportation planning and analysis. GeoInformatica 2000, 4, 141–159. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, X. Accessibility analyst: An integrated GIS tool for accessibility analysis in urban transportation planning. Environ. Plan. B Plan. Des. 2004, 31, 105–124. [Google Scholar] [CrossRef]
- Lemire, P.O.; Delcroix, B.; Audy, J.F.; Labelle, F.; Mangin, P.; Barnabé, S. GIS method to design and assess the transportation performance of a decentralized biorefinery supply system and comparison with a centralized system: Case study in southern Quebec, Canada. Biofuels Bioprod. Biorefin. 2019, 13, 552–567. [Google Scholar] [CrossRef]
- Pantha, B.R.; Yatabe, R.; Bhandary, N.P. GIS-based highway maintenance prioritization model: An integrated approach for highway maintenance in Nepal mountains. J. Transp. Geogr. 2010, 18, 426–433. [Google Scholar] [CrossRef]
- Giuffrida, N.; Le Pira, M.; Inturri, G.; Ignaccolo, M. Mapping with stakeholders: An overview of public participatory GIS and VGI in transport decision-making. ISPRS Int. J. Geo-Inf. 2019, 8, 198. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, G.; Kiranoudis, C.T.; Scaloubacas, P.; Assimacopoulos, D. A GIS-based decision support system for planning urban transportation policies. Eur. J. Oper. Res. 2004, 152, 465–475. [Google Scholar] [CrossRef]
- Bojan, T.M.; Kumar, U.R.; Bojan, V.M. An internet of things based intelligent transportation system. In Proceedings of the 2014 IEEE International Conference on Vehicular Electronics and Safety, Hyderabad, India, 16–17 December 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Acharya, J.; Gaur, S. Edge Compression of GPS Data for Mobile IoT. In Proceedings of the 2017 IEEE Fog World Congress (FWC), Santa Clara, CA, USA, 1 November 2017; pp. 1–6. [Google Scholar]
- Yeh, H.-T.; Chen, B.-C.; Wang, B.-X. A city parking integration system combined with cloud computing technologies and smart mobile devices. EURASIA J. Math. Sci. Technol. Educ. 2016, 12, 1231–1242. [Google Scholar] [CrossRef]
- Du, P.; Chen, J.; Sun, Z.; Li, Y. Design of an IoT-GIS Emergency Management System for Public Road Transport Networks. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management, Bellevue, WA, USA, 3–6 November 2015; pp. 1–4. [Google Scholar]
- Hassanein, H.; Zorba, N.; Han, S.; Kanhere, S.S.; Shukair, M. Crowd management. IEEE Commun. Mag. 2019, 57, 18–19. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.J.; Wei, H.; Zheng, Z.Z.; Liu, Y.L.; Chi, T.H.; Peng, L. Review of the Integrated Researches on Internet of Things and GIS in Fire Emergency Plan. Adv. Mater. Res. 2014, 989–994, 5444–5447. [Google Scholar] [CrossRef]
- Emmanouil, D.; Nikolaos, D. Big data analytics in prevention, preparedness, response and recovery in crisis and disaster management. In Proceedings of the 18th International Conference on Circuits, Systems, Communications and Computers (CSCC 2015), Zakynthos, Greece, 16–20 July 2015. Recent Advances in Computer Engineering Series. [Google Scholar]
- Zafar, U.; Shah, M.A.; Wahid, A.; Akhunzada, A.; Arif, S. Exploring IoT applications for disaster management: Identifying key factors and proposing future directions. In Recent Trends and Advances in Wireless and IoT-Enabled Networks; Springer: New York, NY, USA, 2019; pp. 291–309. [Google Scholar]
- Tran, P.; Shaw, R.; Chantry, G.; Norton, J. GIS and local knowledge in disaster management: A case study of flood risk mapping in Viet Nam. Disasters 2009, 33, 152–169. [Google Scholar] [CrossRef]
- Khan, F.; ur Rehman, A.; Usman, M.; Tan, Z.; Puthal, D. Performance of cognitive radio sensor networks using hybrid automatic repeat ReQuest: Stop-and-wait. Mob. Netw. Appl. 2018, 23, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wen, J.; Yang, K.; Shang, Z.; Zhang, H. GIS-based analysis of flood disaster risk in LECZ of China and population exposure. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; IEEE: New York, NY, USA, 2011. [Google Scholar]
- Huang, Q.; Xiao, Y. Geographic situational awareness: Mining tweets for disaster preparedness, emergency response, impact, and recovery. ISPRS Int. J. Geo-Inf. 2015, 4, 1549–1568. [Google Scholar] [CrossRef] [Green Version]
- Oloruntoba, R.; Sridharan, R.; Davison, G. A proposed framework of key activities and processes in the preparedness and recovery phases of disaster management. Disasters 2018, 42, 541–570. [Google Scholar] [CrossRef]
- Herrmann, J. Disaster Response Planning & Preparedness. In Spiritual Care and Mental Health for Disaster Response and Recovery; Spirit; New York Disaster Interfaith Services: New York, NY, USA, 2007; pp. 11–14. [Google Scholar]
- Fang, S.; Xu, L.; Zhu, Y.; Liu, Y.; Liu, Z.; Pei, H.; Yan, J.; Zhang, H. An integrated information system for snowmelt flood early-warning based on internet of things. Inf. Syst. Front. 2015, 17, 321–335. [Google Scholar] [CrossRef]
- Liu, S.-J.; Zhu, G.-Q. The application of GIS and IOT technology on building fire evacuation. Procedia Eng. 2014, 71, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Youn, J.; Kim, H.; Honglcano, J. Development of a IT-Based Volcanic Disasters Response System. In Proceedings of the Geospatial World Forum, Geneva, Switzerland, 5–9 May 2014. [Google Scholar]
- He, Y.; Wang, D.; Chen, L. Research on The Forest Fire Monitoring System Based on GIS, GPS and Internet of Things. Comput. Knowl. Technol. 2011, 36, 100. [Google Scholar]
- Nabil, A.M.; Mesbah, S.; Sharawi, A. Synergy of GIS and IoT for Weather Disasters Monitoring and Management. In Proceedings of the 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 8–10 December 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Rahman, A.; Kumar, Y.; Fazal, S.; Bhaskaran, S. Urbanization and quality of urban environment using remote sensing and GIS techniques in East Delhi-India. J. Geogr. Inf. Syst. 2011, 3, 62–84. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, M.; Casadesus, M.; Karapetrovic, S.; Heras, I. How integrated are environmental, quality and other standardized management systems? An empirical study. J. Clean. Prod. 2009, 17, 742–750. [Google Scholar] [CrossRef]
- Lovett, G.M.; Burns, D.A.; Driscoll, C.T.; Jenkins, J.C.; Mitchell, M.J.; Rustad, L.; Shanley, J.B.; Likens, G.E.; Haeuber, R. Who needs environmental monitoring? Front. Ecol. Environ. 2007, 5, 253–260. [Google Scholar] [CrossRef]
- Malche, T.; Maheshwary, P.; Kumar, R. Environmental monitoring system for smart city based on secure internet of things (IoT) architecture. Wirel. Pers. Commun. 2019, 107, 2143–2172. [Google Scholar] [CrossRef]
- Nikhil, R.; Rajender, R.; Dushyantha, G.; Jagadevi, N. Smart water quality monitoring system using IoT environment. Int. J. Innov. Eng. Technol 2018, 10, 29–31. [Google Scholar]
- Li, Z.-W.; Zeng, G.-M.; Zhang, H.; Yang, B.; Jiao, S. The integrated eco-environment assessment of the red soil hilly region based on GIS—A case study in Changsha City, China. Ecol. Model. 2007, 202, 540–546. [Google Scholar] [CrossRef]
- Karimipour, F.; Delavar, M.R.; Kinaie, M. Water quality management using GIS data mining. J. Environ. Inform. 2005, 5, 61–71. [Google Scholar] [CrossRef]
- Assaf, H.; Saadeh, M. Assessing water quality management options in the Upper Litani Basin, Lebanon, using an integrated GIS-based decision support system. Environ. Model. Softw. 2008, 23, 1327–1337. [Google Scholar] [CrossRef]
- Pal, P.; Gupta, R.; Tiwari, S.; Sharma, A. IoT based air pollution monitoring system using Arduino. Int. Res. J. Eng. Technol. (IRJET) 2017, 4, 1137–1140. [Google Scholar]
- Islam, F.; Mamun, K. GIS based water quality monitoring system in pacific coastal area: A case study for Fiji. In Proceedings of the 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 2–4 December 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Wilson, J. Local, national, and global applications of GIS in agriculture. In Geographical Information Systems: Management Issues and Applications; Wiley: Hoboken, NJ, USA, 1999; pp. 981–998. [Google Scholar]
- Ahmed, A.; Shibasaki, R. Climate Change and Agricultural Food Production of Bangladesh: An IMPACT assessment Using GIS-Based Biophysical Crop Simulation Model. Available online: https://www.geospatialworld.net/article/climate-change-and-agricultural-food-production-of-bangladesh-an-impact-assessment-using-gis-based-biophysical-crop-simulation-model/ (accessed on 11 December 2020).
- Peters, C.J.; Bills, N.L.; Lembo, A.J.; Wilkins, J.L.; Fick, G.W. Mapping potential foodsheds in New York State: A spatial model for evaluating the capacity to localize food production. Renew. Agric. Food Syst. 2009, 24, 72–84. [Google Scholar] [CrossRef]
- Eckert, J.; Shetty, S. Food systems, planning and quantifying access: Using GIS to plan for food retail. Appl. Geogr. 2011, 31, 1216–1223. [Google Scholar] [CrossRef]
- Zhao, Q.; Jin, G.; Zhou, W.; Wang, C.; Dai, J. Information collection system for diseases and pests in cotton fieldbased on mobile GIS. Trans. Chin. Soc. Agric. Eng. 2015, 31, 183–190. [Google Scholar]
- Zhao, P.; Liu, G.; Li, M.; Li, D. Management information system for apple diseases and insect pests based on GIS. Trans. Chin. Soc. Agric. Eng. 2006, 22, 150–154. [Google Scholar]
- Bolo, B.; Mpoeleng, D. Mapping of crop birds pest using GPS and GIS. J. Agric. Inform. 2019, 10, 12–20. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. An Application of Machine Learning Technique in Forecasting Crop Disease. In Proceedings of the 2019 3rd International Conference on Big Data Research, Melbourn, Australia, 22–24 August 2019; pp. 76–82. [Google Scholar]
- Koua, J.-J.T.; Anoh, A.K.; Soro, D.T.; Kouame, J.K.; Jourda, R.J.P. Evaluation of Agricultural Practices Scenarios for Reducing Erosion in Buyo Lake Catchment (Sassandra; Côte d’Ivoire) by Use of GIS. J. Geosci. Environ. Prot. 2019, 7, 154–171. [Google Scholar]
- Tsegaye, K.; Addis, H.K.; Hassen, E.E. Soil Erosion Impact Assessment using USLE/GIS Approaches to Identify High Erosion Risk Areas in the Lowland Agricultural Watershed of Blue Nile Basin, Ethiopia. Int. Ann. Sci. 2020, 8, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Kouli, M.; Soupios, P.; Vallianatos, F. Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2009, 57, 483–497. [Google Scholar] [CrossRef]
- Iverson, L.; Prasad, A. Estimating regional plant biodiversity with GIS modelling. Divers. Distrib. 1998, 4, 49–61. [Google Scholar] [CrossRef]
- Geyer, R.; Stoms, D.M.; Lindner, J.P.; Davis, F.W.; Wittstock, B. Coupling GIS and LCA for biodiversity assessments of land use: Part 1: Inventory modeling. Int. J. Life Cycle Assess. 2010, 15, 454–467. [Google Scholar] [CrossRef] [Green Version]
- Parker, L.; Bourgoin, C.; Martinez-Valle, A.; Läderach, P. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making. PLoS ONE 2019, 14, e0213641. [Google Scholar] [CrossRef] [Green Version]
- Suma, N.; Samson, S.R.; Saranya, S.; Shanmugapriya, G.; Subhashri, R. IOT based smart agriculture monitoring system. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 177–181. [Google Scholar]
- Liqiang, Z.; Shouyi, Y.; Leibo, L.; Zhen, Z.; Shaojun, W. A crop monitoring system based on wireless sensor network. Procedia Environ. Sci. 2011, 11, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Jaishetty, S.A.; Patil, R. IoT sensor network based approach for agricultural field monitoring and control. IJRET Int. J. Res. Eng. Technol. 2016, 5, 44–48. [Google Scholar]
- Dalsted, K. Introduction: Remote sensing and GIS techniques for the detection, surveillance, and management of invasive species. In GIS Applications in Agriculture, Volume Three; CRC Press: Boca Raton, FL, USA, 2011; pp. 16–23. [Google Scholar]
- Zhao, G.; Yu, H.; Wang, G.; Sui, Y.; Zhang, L. Study on the detection and warning system of rice disease based on the GIS and IOT in Jilin Province. In Computer and Computing Technologies in Agriculture VIII, Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 16–19 September 2014; Springer: New York, NY, USA, 2015; pp. 337–343. [Google Scholar]
- Das, S.D.; Deb, N.; Biswal, G.R.; Das, S. High Voltage Aspects of Smart Agriculture through GIS Towards Smarter IoT. In Proceedings of the 2019 International Conference on Automation, Computational and Technology Management (ICACTM), London, UK, 24–26 April 2019; IEEE: New York, NY, USA, 2019; pp. 484–488. [Google Scholar]
- Simmhan, Y.; Ravindra, P.; Chaturvedi, S.; Hegde, M.; Ballamajalu, R. Towards a data-driven IoT software architecture for smart city utilities. Softw. Pract. Exp. 2018, 48, 1390–1416. [Google Scholar] [CrossRef]
- Bran, M.; Frigura-Iliasa, M.; Filipescu, H.E.; Dolga, L.; Vatau, V.; Iorga, M. Case Study about Smart Integrated Utilities for Smart Cities. In Proceedings of the 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 23–25 January 2020; IEEE: New York, NY, USA, 2020; pp. 23–26. [Google Scholar]
- Sánchez, L.; Elicegui, I.; Cuesta, J.; Muñoz, L.; Lanza, J. Integration of utilities infrastructures in a future internet enabled smart city framework. Sensors 2013, 13, 14438–14465. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Deng, Y.; Won, J.; Cheng, J.C. An integrated underground utility management and decision support based on BIM and GIS. Autom. Constr. 2019, 107, 102931. [Google Scholar] [CrossRef]
- Chalkias, C.; Lasaridi, K. A GIS based model for the optimisation of municipal solid waste collection: The case study of Nikea, Athens, Greece. Technology 2009, 1, 11–15. [Google Scholar]
- Kallel, A.; Serbaji, M.M.; Zairi, M. Using GIS-Based tools for the optimization of solid waste collection and transport: Case study of Sfax City, Tunisia. J. Eng. 2016, 2016, 4596849. [Google Scholar] [CrossRef] [Green Version]
- Chang, N.-B.; Lu, H.; Wei, Y. GIS technology for vehicle routing and scheduling in solid waste collection systems. J. Environ. Eng. 1997, 123, 901–910. [Google Scholar] [CrossRef]
- Malakahmad, A.; Bakri, P.M.; Mokhtar, M.R.M.; Khalil, N. Solid waste collection routes optimization via GIS techniques in Ipoh city, Malaysia. Procedia Eng. 2014, 77, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Hemidat, S.; Oelgemöller, D.; Nassour, A.; Nelles, M. Evaluation of Key Indicators of Waste Collection Using GIS Techniques as a Planning and Control Tool for Route Optimization. Waste Biomass Valorization 2017, 8, 1533–1554. [Google Scholar] [CrossRef]
- Chalkias, C.; Lasaridi, K. Optimizing municipal solid waste collection using GIS. In Proceedings of the 5th International Conference on Energy, Environment, Ecosystems and Sustainable Development/2nd International Conference on Landscape Architecture, Athens, Greece, 28–30 September 2009; pp. 45–50. [Google Scholar]
- Anagnostopoulos, T.; Zaslavsy, A.; Medvedev, A.; Khoruzhnicov, S. Top--k query based dynamic scheduling for IoT-enabled smart city waste collection. In Proceedings of the 2015 16th IEEE International Conference on Mobile Data Management, Pittsburgh, PA, USA, 15–18 June 2015; IEEE: New York, NY, USA, 2015; pp. 50–55. [Google Scholar]
- Anagnostopoulos, T.; Zaslavsky, A.; Medvedev, A. Robust waste collection exploiting cost efficiency of IoT potentiality in Smart Cities. In Proceedings of the 2015 International Conference on Recent Advances in Internet of Things (RIoT), Singapore, 7–9 April 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Islam, M.S.; Hannan, M.; Arebey, M.; Basri, H. An overview for solid waste bin monitoring system. J. Appl. Sci. Res. 2012, 1, 879–886. [Google Scholar]
- Stepanova, I.A.; Stepanov, A.S. An overview of waste collection systems in anthropogenic ecosystems. Samara J. Sci. 2020, 9, 121–131. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Re Cecconi, F.; Moretti, N.; Rinaldi, S.; Bellagente, P.; Ciribini, A.L.C. Security Assessment of Urban Areas through a GIS-Based Analysis of Lighting Data Generated by IoT Sensors. Appl. Sci. 2020, 10, 2174. [Google Scholar] [CrossRef] [Green Version]
- Pandharipande, A.; Zhao, M.; Frimout, E.; Thijssen, P. IoT lighting: Towards a connected building eco-system. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 Febbruary 2018; IEEE: New York, NY, USA, 2018; pp. 664–669. [Google Scholar]
- Caicedo, D.; Pandharipande, A. Distributed illumination control with local sensing and actuation in networked lighting systems. IEEE Sens. J. 2012, 13, 1092–1104. [Google Scholar] [CrossRef] [Green Version]
- Yu-de ZHANG Chang-hao, D.; Meng-meng, D.B.-y.L.; Qing-peng, Q.X.-h.D. Design of GIS-Based Digital Lighting System for City Road. J. South China Univ. Technol. (Nat. Sci.) 2016, 44, 51. [Google Scholar]
- Kruszynski, W.; Dawidowicz, J.; Andraka, D.; Tomaszewska, J. Application and digital implementation GIS data to computer modeling of the sanitary sewage network in Podlaskie voivodship. Ekon. Śr. 2018, 65, 9. [Google Scholar]
- Adam, K.J. Management of Sewerage Network by Using GIS. Master’s Thesis, Sudan University of Science and Technology, Khartoum, Sudan, 2015. [Google Scholar]
- Fellers, J. Implementing a Geographic Information System for a Rural Water and Sewer Company: A Case Study of the Newberry County Water and Sewer Authority: A Thesis Presented to the Department of Humanities and Social Sciences in Candidacy for the Degree of Master of Science. Ph.D. Thesis, Northwest Missouri State University, Maryville, MO, USA, 2013. [Google Scholar]
- Patil, J.; Kulkarni, S. Design and mapping of underground sewerage network in GIS, a case study of Islampur Town. Int. J. Sci. Res. 2012, 3, 2319–7064. [Google Scholar]
- Abdelbaki, C.; Rouissat, B.; Charef, I.; Abdelkader, A.H. Management of a Sewerage Network by Coupling GIS and Hydraulic Modeling: A Case Study of the Network of the New University in Tlemcen, Algeria. LARHYSS J. 2016, 28, 167–179. [Google Scholar]
- Mugambi, B.K. Application of GIS and Remote Sensing in Enhancing Sewer Reticulation Networks, Case Study of Nyeri Municipality. Available online: http://repository.dkut.ac.ke:8080/xmlui/handle/123456789/1179 (accessed on 11 December 2020).
- Yoo, J. GIS-based simulation of urban sewerage flow volume. Urban Water J. 2005, 2, 1–12. [Google Scholar] [CrossRef]
- Mohsin, A.N. Using 3D Analysis of GIS and Remote Sensing for Modeling Erbil Water Flow and Sewerage Network. Eng. Technol. J. 2010, 28, 4910–4925. [Google Scholar]
- Tadokoro, H.; Jp, P.; Nakamura, N.; Nishimura, T.; Uemura, K.; Kikuchi, N.; Hatayama, M. Monitoring and Control Systems for the IoT in the Water Supply and Sewerage Utilities. Hitachi Rev. 2017, 66, 704–711. [Google Scholar]
- Wang, Z.; Xu, J.; He, X.; Wang, Y. Analysis of spatiotemporal influence patterns of toxic gas monitoring concentrations in an urban drainage network based on IoT and GIS. Pattern Recognit. Lett. 2020, 138, 237–246. [Google Scholar] [CrossRef]
- Golechha, M. Healthcare agenda for the Indian government. Indian J. Med. Res. 2015, 141, 151. [Google Scholar] [CrossRef]
- Tomlinson, T.; Godbole, P. Opportunities and Challenges in Global Healthcare. In Hospital Transformation; Springer: New York, NY, USA, 2019; pp. 7–12. [Google Scholar]
- Greening, N. Analysis and Reporting of Case Studies, Global Healthcare in an Aging Society. Sci. Res. J. 2019, VII. [Google Scholar] [CrossRef]
- Higgs, G. A literature review of the use of GIS-based measures of access to health care services. Health Serv. Outcomes Res. Methodol. 2004, 5, 119–139. [Google Scholar] [CrossRef]
- Dulin, M.F.; Ludden, T.M.; Tapp, H.; Blackwell, J.; de Hernandez, B.U.; Smith, H.A.; Furuseth, O.J. Using Geographic Information Systems (GIS) to understand a community’s primary care needs. J. Am. Board Fam. Med. 2010, 23, 13–21. [Google Scholar] [CrossRef]
- Dogru, A.O.; David, R.M.; Ulugtekin, N.; Goksel, C.; Seker, D.Z.; Sözen, S. GIS based spatial pattern analysis: Children with Hepatitis A in Turkey. Environ. Res. 2017, 156, 349–357. [Google Scholar] [CrossRef]
- Bui, T.Q.; Pham, H.M. Web-based GIS for spatial pattern detection: Application to malaria incidence in Vietnam. SpringerPlus 2016, 5, 1014. [Google Scholar] [CrossRef] [Green Version]
- Mollalo, A.; Mao, L.; Rashidi, P.; Glass, G.E. A GIS-based artificial neural network model for spatial distribution of tuberculosis across the continental United States. Int. J. Environ. Res. Public Health 2019, 16, 157. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K.; Nathawat, M.S. GIS in Healthcare Planning: A Case Study of Varanasi, India. Forum Geografic 2013, 12, 153–163. [Google Scholar] [CrossRef]
- Elmes, G.A. 13 GIS in Public Healthcare Planning: The United States Perspective. In GIS in Public Health Practice; CRC Press: Boca Raton, FL, USA, 2016; p. 205. [Google Scholar]
- Kim, Y.; Byon, Y.-J.; Yeo, H. Enhancing healthcare accessibility measurements using GIS: A case study in Seoul, Korea. PLoS ONE 2018, 13, e0193013. [Google Scholar] [CrossRef] [Green Version]
- Dejen, A.; Soni, S.; Semaw, F. Spatial accessibility analysis of healthcare service centers in Gamo Gofa Zone, Ethiopia through Geospatial technique. Remote Sens. Appl. Soc. Environ. 2019, 13, 466–473. [Google Scholar] [CrossRef]
- Lu, D.; Liu, T. The application of IOT in medical system. In Proceedings of the 2011 IEEE International Symposium on IT in Medicine and Education, Guangzhou, China, 9–11 December 2011; IEEE: New York, NY, USA, 2011; pp. 272–275. [Google Scholar]
- Babu, B.S.; Srikanth, K.; Ramanjaneyulu, T.; Narayana, I.L. IoT for healthcare. Int. J. Sci. Res. 2016, 5, 322–326. [Google Scholar]
- Kodali, R.K.; Swamy, G.; Lakshmi, B. An implementation of IoT for healthcare. In Proceedings of the 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Trivandrum, India, 10–12 December 2015; IEEE: New York, NY, USA, 2015; pp. 411–416. [Google Scholar]
- Shankar, K.; Ilayaraja, M.; Kumar, K.S. Technological Solutions for Health Care Protection and Services Through Internet Of Things (IoT). Int. J. Pure Appl. Math. 2018, 118, 277–283. [Google Scholar]
- Yeole, A.S.; Kalbande, D.R. Use of Internet of Things (IoT) in healthcare: A survey. In Proceedings of the ACM Symposium on Women in Research, Indore, India, 21–22 March 2016; pp. 71–76. [Google Scholar]
- Termeh, V.R.; Niaraki, A.S. Design and Implementation of Ubiquitous Health System (U-Health) Using Smart-Watches Sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.U.; Waseem, M.; Mazhar, S.; Khairi, A.; Kamal, T. A review on internet of things (IoT). Int. J. Comput. Appl. 2015, 113, 1–7. [Google Scholar]
- Said, O.; Masud, M. Towards internet of things: Survey and future vision. Int. J. Comput. Netw. 2013, 5, 1–17. [Google Scholar]
- Chen, W. An IBE-Based Security Scheme on Internet of Things. In Proceedings of the 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, 1 November 2012; pp. 1046–1049. [Google Scholar]
- Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future internet: The internet of things architecture, possible applications and key challenges. In Proceedings of the 2012 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 17–19 December 2012; IEEE: New York, NY, USA, 2012; pp. 257–260. [Google Scholar]
- Mashal, I.; Alsaryrah, O.; Chung, T.-Y.; Yang, C.-Z.; Kuo, W.-H.; Agrawal, D.P. Choices for interaction with things on Internet and underlying issues. Ad Hoc Netw. 2015, 28, 68–90. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Sen, J. Internet of things: Applications and challenges in technology and standardization. Wirel. Pers. Commun. 2011, 58, 49–69. [Google Scholar] [CrossRef]
- Zhang, Y. Technology framework of the Internet of Things and its application. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; IEEE: New York, NY, USA, 2011; pp. 4109–4112. [Google Scholar]
- Maguire, D.J. An overview and definition of GIS. Geogr. Inf. Syst. Princ. Appl. 1991, 1, 9–20. [Google Scholar]
- Chang, K.T. Geographic information system. Int. Encycl. Geogr. People Earth Environ. Technol. 2016, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Cui, X.; Zhang, G.; Wang, G. City pipe network intelligent service based on GIS and internet of things. In Proceedings of the 2014 7th International Conference on Intelligent Computation Technology and Automation, Changsha, China, 25–26 October 2014; IEEE: New York. USA, 2014; pp. 936–939. [Google Scholar]
- Nourjou, R.; Hashemipour, M. Smart Energy Utilities Based on Real-Time GIS Web Services and Internet of Things. Procedia Comput. Sci. 2017, 110, 8–15. [Google Scholar] [CrossRef]
- Konomi, S.I.; Roussos, G. Enriching Urban Spaces with Ambient Computing, the Internet of Things, and Smart City Design; IGI Global: Pennsylvania, PA, USA, 2016. [Google Scholar]
- Bhanumathi, V.; Kalaivanan, K. The role of geospatial technology with IoT for precision agriculture. In Cloud Computing for Geospatial Big Data Analytics; Springer: New York, NY, USA, 2019; pp. 225–250. [Google Scholar]
- Lv, Z.; Li, X.; Lv, H.; Xiu, W. BIM big data storage in WebVRGIS. IEEE Trans. Ind. Inform. 2019, 16, 2566–2573. [Google Scholar] [CrossRef]
- Zhao, Q.; Feng, J.P.; Li, T.; Jin, L. Research on application of sensor monitoring technology based on the IOT in the campus GIS pipeline system. Appl. Mech. Mater. 2014, 668–669, 944–947. [Google Scholar] [CrossRef]
- Yang, J.; Han, Y.; Wang, Y.; Jiang, B.; Lv, Z.; Song, H. Optimization of real-time traffic network assignment based on IoT data using DBN and clustering model in smart city. Future Gener. Comput. Syst. 2020, 108, 976–986. [Google Scholar] [CrossRef]
- Butgereit, L.L. Using GeoHashes to Combine IOT and GIS to Provide Business Intelligence to the Informal Sector in South Africa. In Proceedings of the 35th International Conference on Computers and Their Applications, San Francisco, CA, USA, 23–25 March 2020; pp. 90–97. [Google Scholar]
- Priya, R.V.; Sivaranjani, S.; Sivakumari, S. GIS enabled internet of things (IoT) applications: An overview. World Sci. News 2016, 41, 143. [Google Scholar]
- Lin, X. Logistic geographical information detecting unified information system based on Internet of Things. In Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks, Xi’an, China, 27–29 May 2011; IEEE: New York, NY, USA, 2011; pp. 303–307. [Google Scholar]
- Isikdag, U. BIM and IoT: A synopsis from GIS perspective. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Nordrum, A. The internet of fewer things [news]. IEEE Spectr. 2016, 53, 12–13. [Google Scholar] [CrossRef]
- Chase, J. The evolution of the internet of things. Tex. Instrum. 2013, 1, 1–7. [Google Scholar]
- van der Zee, E.; Scholten, H. Spatial dimensions of big data: Application of geographical concepts and spatial technology to the internet of things. In Big Data and Internet of Things: A Roadmap for Smart Environments; Springer: New York, NY, USA, 2014; pp. 137–168. [Google Scholar]
- Kamilaris, A.; Ostermann, F. Geospatial Analysis and Internet of Things in Environmental Informatics. arXiv 2018, arXiv:1808.01895. [Google Scholar]
- Li, Y.; Tan, K.C.; Xie, M. Measuring web-based service quality. Total Qual. Manag. 2002, 13, 685–700. [Google Scholar] [CrossRef]
- Fu, P. Getting to Know Web GIS, 4th ed.; Esri Press: Redlands, CA, USA, 2016. [Google Scholar]
- Alesheikh, A.A.; Helali, H.; Behroz, H. Web GIS: Technologies and its applications. In Symposium on Geospatial Theory, Processing and Applications; ISPRS: Hannover, Germany, 2002. [Google Scholar]
- Chen, F.; Yang, C.; Yu, W.; Le, X.; Yang, J. Research on mobile GIS based on LBS. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’05, Seoul, Korea, 29 July 2005; IEEE: New York, NY, USA, 2005. [Google Scholar]
- Tsou, M.-H. Integrated mobile GIS and wireless internet map servers for environmental monitoring and management. Cartogr. Geogr. Inf. Sci. 2004, 31, 153–165. [Google Scholar] [CrossRef] [Green Version]
Processing Layer | Application Layer | ||||
---|---|---|---|---|---|
Article | Data-Related | Visualization | Analysis | Mobile GIS | Web GIS |
[26] | 🗸 | 🗸 | |||
[27] | 🗸 | 🗸 | 🗸 | ||
[28] | 🗸 | ||||
[29] | 🗸 | 🗸 | 🗸 | ||
[25] | 🗸 | 🗸 | |||
[30] | 🗸 | ||||
[31] | 🗸 | 🗸 | |||
[33] | 🗸 | 🗸 | |||
[65] | 🗸 | ||||
[78] | 🗸 | ||||
[79] | 🗸 | ||||
[82] | 🗸 | ||||
[92] | 🗸 | ||||
[111] | 🗸 | 🗸 | |||
[112] | 🗸 | ||||
[127] | 🗸 | 🗸 | |||
[140] | 🗸 | 🗸 | |||
[169] | 🗸 | ||||
[170] | 🗸 | 🗸 | 🗸 | 🗸 | |
[171] | 🗸 | ||||
[172] | 🗸 | ||||
[173] | 🗸 | 🗸 | |||
[174] | 🗸 | 🗸 | |||
[175] | 🗸 | ||||
[176] | 🗸 | ||||
[177] | 🗸 | 🗸 | |||
[178] | 🗸 | ||||
[179] | 🗸 |
Application | The Role of GIS | The Role of IoT | Advantages of IoT-GIS Integration |
---|---|---|---|
Urban Infrastructure |
|
|
|
Transportation |
|
|
|
Disaster Management |
|
|
|
Environmental Monitoring |
|
|
|
Agriculture |
|
|
|
Utilities |
|
|
|
Healthcare |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safari Bazargani, J.; Sadeghi-Niaraki, A.; Choi, S.-M. A Survey of GIS and IoT Integration: Applications and Architecture. Appl. Sci. 2021, 11, 10365. https://doi.org/10.3390/app112110365
Safari Bazargani J, Sadeghi-Niaraki A, Choi S-M. A Survey of GIS and IoT Integration: Applications and Architecture. Applied Sciences. 2021; 11(21):10365. https://doi.org/10.3390/app112110365
Chicago/Turabian StyleSafari Bazargani, Jalal, Abolghasem Sadeghi-Niaraki, and Soo-Mi Choi. 2021. "A Survey of GIS and IoT Integration: Applications and Architecture" Applied Sciences 11, no. 21: 10365. https://doi.org/10.3390/app112110365
APA StyleSafari Bazargani, J., Sadeghi-Niaraki, A., & Choi, S.-M. (2021). A Survey of GIS and IoT Integration: Applications and Architecture. Applied Sciences, 11(21), 10365. https://doi.org/10.3390/app112110365