A New Coupling Method for Accurate Measurement of Pedicle Screw Electrical Properties for Surgical Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Samples
2.2. Testing Setup
2.3. Coupling Methods
2.4. Data Collection Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clavijo, C.F.; Scott, B.K. Intraoperative Neuromonitoring for Specific Neurosurgical Procedures. In Neurocritical Care Management of the Neurosurgical Patient; Kumar, M., Kofke, W.A., Levine, J.M., Schuster, J., Eds.; Elsevier: London, UK, 2018; pp. 59–70. [Google Scholar] [CrossRef]
- Fonseca, P.; Goethel, M.; Vilas-Boas, J.P.; Gutierres, M.; Correia, M.V. A Bibliometric analysis of intraoperative neuromonitoring in spine surgery. World Neurosurgery 2021, 154, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Calancie, B.; Madsen, P.; Lebwohl, N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine 1994, 19, 2780–2786. [Google Scholar] [CrossRef] [PubMed]
- Min, W.K.; Na, S.B.; Jang, J.A. Accuracy of thoracic pedicle screw placement using freehand technique and triggered EMG in adolescent idiopathic scoliosis: Is it different between concave and convex side? J. Orthop. Surg. 2018, 26, 2309499018784975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindra, V.M.; Kalra, R.R.; Dailey, A.T. Electromyography stimulation compared with intraoperative O-arm imaging for evaluating pedicle screw breaches in lumbar spine surgery: A prospective analysis of 1006 screws in 164 patients. Spine J. 2019, 19, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Reidy, D.P.; Houlden, D.; Nolan, P.C.; Kim, M.; Finkelstein, J.A. Evaluation of electromyographic monitoring during insertion of thoracic pedicle screws. J. Bone Joint Surg. Br. 2001, 83, 1009–1014. [Google Scholar] [CrossRef]
- Parker, S.L.; Amin, A.G.; Farber, S.H.; McGirt, M.J.; Sciubba, D.M.; Wolinsky, J.P.; Bydon, A.; Gokaslan, Z.L.; Witham, T.F. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: Analysis of 2450 consecutively placed screws. J. Neurosurg. Spine 2011, 15, 130–135. [Google Scholar] [CrossRef]
- Lee, C.H.; Kim, H.W.; Kim, H.R.; Lee, C.Y.; Kim, J.H.; Sala, F. Can triggered electromyography thresholds assure accurate pedicle screw placements? A systematic review and meta-analysis of diagnostic test accuracy. Clin. Neurophysiol. 2015, 126, 2019–2025. [Google Scholar] [CrossRef]
- Mikula, A.L.; Williams, S.K.; Anderson, P.A. The use of intraoperative triggered electromyography to detect misplaced pedicle screws: A systematic review and meta-analysis. J. Neurosurg. Spine 2016, 24, 624–638. [Google Scholar] [CrossRef]
- Öner, A.; Ely, C.G.; Hermsmeyer, J.T.; Norvell, D.C. Effectiveness of EMG use in pedicle screw placement for thoracic spinal deformities. Evid. Based Spine Care J. 2012, 3, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limbrick, D.D., Jr.; Wright, N.M. Verification of nerve root decompression during minimally-invasive lumbar microdiskectomy: A practical application of surgeon-driven evoked EMG. Minim. Invasive Neurosurg. 2005, 48, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liao, X.; Ma, X.; Li, C.; Han, J.; Zhou, Y. Solid and hollow pedicle screws affect the electrical resistance: A potential source of error with stimulus-evoked electromyography. Indian J. Orthop. 2013, 47, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-Y.; Tsai, T.-T.; Lai, P.-L.; Hsieh, M.-K.; Chen, L.-H.; Tai, C.-L. Biomechanical comparison of pedicle screw fixation strength in synthetic bones: Effects of screw shape, core/thread profile and cement augmentation. PLoS ONE 2020, 15, e0229328. [Google Scholar] [CrossRef]
- Kubiak, A.J.; Lindqvist-Jones, K.; Dearn, K.D.; Shepherd, D.E.T. Comparison of the mechanical properties of two designs of polyaxial pedicle screw. Eng. Fail. Anal. 2019, 95, 96–106. [Google Scholar] [CrossRef]
- Rosa, G.L.; Clienti, C.; Mineo, R.; Audenino, A. Experimental analysis of pedicle screws. Procedia Struct. Integr. 2016, 2, 1244–1251. [Google Scholar] [CrossRef] [Green Version]
- Limthongkul, W.; Savage, J.; Nenonene, E.K.; Karaikovic, E.E. Evaluation of the intrinsic properties of pedicle screws: Do diamater, manufacturing and screw design affect resistance and/or resistivity. Bosn. J. Basic Med. Sci. 2009, 9, S77–S82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, T.T.; Tadlock, S.; Bernbeck, J.; Fung, D.A.; Molinares, D.M. Can triggered electromyography be used to evaluate pedicle screw placement in hydroxyapatite-coated screws: An electrical examination. J. Clin. Neurophysiol. 2014, 31, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Zyss, J.; Bernat, I.; Wolff, S.; Riouallon, G.; Pascal-Moussellard, H. Limitations and pitfalls of the pedicle screw testing monitoring technique: An in vivo and in vitro study. Neurophysiol. Clin. 2017, 47, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.G.; Wierzbowski, L.R.; Schwartz, D.M.; Hilibrand, A.S.; Vaccaro, A.R.; Albert, T.J. Pedicle screws with high electrical resistance: A potential source of error with stimulus-evoked EMG. Spine 2002, 27, 1577–1581. [Google Scholar] [CrossRef] [PubMed]
- Ksiazkiewicz, A.; Dombek, G.; Nowak, K. Change in electric contact resistance of low-voltage relays affected by fault current. Materials 2019, 12, 2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, R. Parametric measures of effect size. In The Handbook of Research Synthesis; Cooper, H., Hedges, L.V., Eds.; Russell Sage Foundation: New York, NY, USA, 1994; pp. 231–244. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- ASM International Handbook Committe. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Geauga County, OH, USA, 1990; Volume 2. [Google Scholar]
Method | Spinelock Screw | Spinecall Screw | ||||||
---|---|---|---|---|---|---|---|---|
Voltage (μV) | Current (mA) | Resistance (mΩ) | Resistivity (μΩ·m) | Voltage (μV) | Current (mA) | Resistance (mΩ) | Resistivity (μΩ·m) | |
PROBE | 19.0 (2.0) | 10.00 (0.01) | 1.899 (0.198) | 3.020 (0.315) | 17.0 (2.0) | 9.99 (0.01) | 1.702 (0.202) | 3.341 (0.397) |
CLIPS | 23.0 (6.0) | 10.01 (0.02) | 2.302 (0.576) | 3.662 (0.917) | 23.0 (7.0) | 9.99 (0.12) | 2.302 (0.691) | 4.521 (1.356) |
WRAP | 21.0 (2.0) | 9.99 (0.04) | 2.199 (0.184) | 3.497 (0.291) | 16.0 (2.3) | 10.03 (0.20) | 1.606 (0.222) | 3.154 (0.437) |
CAPSULE | 15.0 (1.0) | 10.00 (0.02) | 1.502 (0.096) | 2.388 (0.152) | 11.5 (3.3) | 10.00 (0.02) | 1.150 (0.327) | 2.258 (0.642) |
Screw Type | Method 1 | Method 2 | Mann–Whitney U | Z | Adjusted p Value | r |
---|---|---|---|---|---|---|
Spinelock | PROBE | CLIPS | 366.500 | 6.094 | <0.001 | 0.609 |
WRAP | 149.000 | 7.595 | <0.001 | 0.760 | ||
CAPSULE | 52.000 | 8.273 | <0.001 | 0.827 | ||
CLIPS | WRAP | 1039.500 | 1.452 | 0.882 | 0.145 | |
CAPSULE | 0.000 | 8.627 | <0.001 | 0.863 | ||
WRAP | CAPSULE | 0.000 | 8.628 | <0.001 | 0.863 | |
Spinecall | PROBE | CLIPS | 352.50 | 6.191 | <0.001 | 0.619 |
WRAP | 851.00 | 2.752 | 0.036 | 0.275 | ||
CAPSULE | 43.00 | 8.325 | <0.001 | 0.833 | ||
CLIPS | WRAP | 213.50 | 7.147 | <0.001 | 0.715 | |
CAPSULE | 9.50 | 8.554 | <0.001 | 0.855 | ||
WRAP | CAPSULE | 89.50 | 8.002 | <0.001 | 0.800 |
Mann–Whitney U | Z | p Value | r | |
---|---|---|---|---|
PROBE | 491.000 | 5.237 | <0.001 | 0.524 |
CLIPS | 559.500 | 4.761 | <0.001 | 0.476 |
WRAP | 544.000 | 4.868 | <0.001 | 0.487 |
CAPSULE | 910.500 | 2.343 | 0.019 | 0.234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, P.; Goethel, M.F.; Sebastião, R.; Sousa, M.V.; Vilas-Boas, J.P.; Correia, M.V.; Gutierres, M. A New Coupling Method for Accurate Measurement of Pedicle Screw Electrical Properties for Surgical Procedures. Appl. Sci. 2021, 11, 9861. https://doi.org/10.3390/app11219861
Fonseca P, Goethel MF, Sebastião R, Sousa MV, Vilas-Boas JP, Correia MV, Gutierres M. A New Coupling Method for Accurate Measurement of Pedicle Screw Electrical Properties for Surgical Procedures. Applied Sciences. 2021; 11(21):9861. https://doi.org/10.3390/app11219861
Chicago/Turabian StyleFonseca, Pedro, Márcio Fagundes Goethel, Ricardo Sebastião, Manoela Vieira Sousa, João Paulo Vilas-Boas, Miguel Velhote Correia, and Manuel Gutierres. 2021. "A New Coupling Method for Accurate Measurement of Pedicle Screw Electrical Properties for Surgical Procedures" Applied Sciences 11, no. 21: 9861. https://doi.org/10.3390/app11219861
APA StyleFonseca, P., Goethel, M. F., Sebastião, R., Sousa, M. V., Vilas-Boas, J. P., Correia, M. V., & Gutierres, M. (2021). A New Coupling Method for Accurate Measurement of Pedicle Screw Electrical Properties for Surgical Procedures. Applied Sciences, 11(21), 9861. https://doi.org/10.3390/app11219861