Renal Acoustic Radiation Force Impulse Elastography in Hypertensive Nephroangiosclerosis Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kramer, A.; Pippias, M.; Noordzij, M.; Stel, V.S.; Andrusev, A.M.; Aparicio-Madre, M.I.; Arribas Monzón, F.E.; Åsberg, A.; Barbullushi, M.; Beltrán, P.; et al. The European Renal Association–European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2016: A summary. Clin. Kidney J. 2019, 12, 702–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, A.; Boenink, R.; Noordzij, M.; Bosdriesz, J.R.; Stel, V.S.; Beltrán, P.; Ruiz, J.C.; Seyahi, N.; Farnés, J.C.; Stendahl, M.; et al. The ERA–EDTA Registry Annual Report 2017: A summary. Clin. Kidney J. 2020, 13, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Nitta, K.; Masakane, I.; Hanafusa, N.; Hasegawa, T.; Nakai, S.; Goto, S.; Wada, A.; Hamano, T.; Hoshino, J.; Joki, N.; et al. Annual dialysis data report 2017. Ren. Replace Ther. 2019, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Stompór, T.; Perkowska-Ptasińska, A. Hypertensive kidney disease: A true epidemic or rare disease? Pol. Arch. Intern. Med. 2020, 130, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Hallan, S.I.; Øvrehus, M.A.; Bjørneklett, R.; Aasarød, K.I.; Fogo, A.B.; Ix, J.H. Hypertensive nephrosclerosis: Wider kidney biopsy indications may be needed to improve diagnostics. J. Intern. Med. 2021, 289, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, B.K.; Matsushita, K.; Woodward, M.; Blankestijn, P.J.; Cirillo, M.; Ohkubo, T.; Rossing, P.; Sarnak, M.J.; Stengel, B.; Yamagishi, K.; et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: A meta-analysis. Lancet 2012, 380, 1649–1661. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, K.; Van Der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; De Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef] [Green Version]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Bakris, G.L.; Sorrentino, M.J. Hypertension. A companion to Braunwald’s Heart Disease, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Lin, H.Y.-H.; Lee, Y.-L.; Lin, K.-D.; Chiu, Y.-W.; Shin, S.-J.; Hwang, S.-J.; Chen, H.-C.; Hung, C.-C. Association of Renal Elasticity and Renal Function Progression in Patients with Chronic Kidney Disease Evaluated by Real-Time Ultrasound Elastography. Sci. Rep. 2017, 7, srep43303. [Google Scholar] [CrossRef]
- Knapp, R.; Plötzeneder, A.; Frauscher, F.; Helweg, G.; Judmaier, W.; Nedden, D.Z.; Recheis, W.; Bartsch, G. Variability of Doppler parameters in the healthy kidney: An anatomic-physiologic correlation. J. Ultrasound Med. 1995, 14, 427–429. [Google Scholar] [CrossRef]
- Platt, J.F. Doppler ultrasound of the kidney. Semin. Ultrasound CT MRI 1997, 18, 22–32. [Google Scholar] [CrossRef]
- Duymuş, M.; Menzilcioğlu, M.S.; Gok, M.; Avcu, S. Kidney Ultrasound Elastography: Review. Kafkas J. Med. Sci. 2016, 6, 121–129. [Google Scholar] [CrossRef]
- Wang, L. Applications of acoustic radiation force impulse quantification in chronic kidney disease: A review. Ultrasonography 2016, 35, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, R.M.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Izzo, J.L.; Sica, D.A.; Black, H.R. Hypertension Primer, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PE, USA, 2008. [Google Scholar]
- Awua-Larbi, S.; Wong, T.Y.; Cotch, M.F.; Durazo-Arvizu, R.; Jacobs, D.R.; Klein, B.E.K.; Klein, R.; Lima, J.; Liu, K.; Kramer, H. Retinal arteriolar caliber and urine albumin excretion: The Multi-Ethnic Study of Atherosclerosis. Nephrol. Dial. Transplant. 2011, 26, 3523–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.Y.; Mitchell, P. Hypertensive retinopathy. N. Engl. J. Med. 2004, 351, 2310–2317. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Viazzi, F.; Leoncini, G.; Derchi, L.E.; Pontremoli, R. Ultrasound Doppler renal resistive index: A useful tool for the management of the hypertensive patient. J. Hypertens. 2014, 32, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Sievers, L.K.; Eckardt, K.-U. Molecular Mechanisms of Kidney Injury and Repair in Arterial Hypertension. Int. J. Mol. Sci. 2019, 20, 2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bob, F.; Bota, S.; Sporea, I.; Sirli, R.; Popescu, A.; Schiller, A. Relationship between the Estimated Glomerular Filtration Rate and Kidney Shear Wave Speed Values Assessed by Acoustic Radiation Force Impulse Elastography. J. Ultrasound Med. 2015, 34, 649–654. [Google Scholar] [CrossRef]
- Boulatov, V.A.; Stenehjem, A.; Os, I. Association between albumin:creatinine ratio and 24-hour ambulatory blood pressure in essential hypertension. Am. J. Hypertens. 2001, 14, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Sabanayagam, C.; Shankar, A.; Koh, D.; Chia, K.S.; Saw, S.M.; Lim, S.C.; Tai, E.S.; Wong, T.Y. Retinal Microvascular Caliber and Chronic Kidney Disease in an Asian Population. Am. J. Epidemiol. 2009, 169, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.-J.; Kim, D.-H.; Nam, G.-E.; Yoon, Y.-J.; Han, K.-D.; Jung, D.-W.; Park, S.-W.; Kim, Y.-E.; Lee, S.-H.; Lee, S.-S.; et al. Prevalence and Control of Hypertension and Albuminuria in South Korea: Focus on Obesity and Abdominal Obesity in the Korean National Health and Nutrition Examination Survey, 2011–2012. PLoS ONE 2014, 9, e111179. [Google Scholar] [CrossRef] [Green Version]
- Georgakis, M.K.; Chatzopoulou, D.; Tsivgoulis, G.; Petridou, E. Albuminuria and Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2018, 66, 509–517. [Google Scholar] [CrossRef]
- Grupper, A.; Ehrenwald, M.; Schwartz, D.; Berliner, S.; Shashar, M.; Baruch, R.; Schwartz, I.F.; Rogowski, O.; Zeltser, D.; Shapira, I.; et al. Hypertension is associated with increased post-exercise albuminuria, which may be attenuated by an active lifestyle. J. Clin. Hypertens. 2019, 21, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Pellerito, J.S.; Zwiebel, W.J. Ultrasound assessment of native renal vessels and renal allografts. In Introduction to Vascular Ultrasonography; Zwiebel, W.J., Pellerito, S., Eds.; Elsevier: Philadelphia, PE, USA, 2005; pp. 612–636. [Google Scholar]
- Pontremoli, R.; Viazzi, F.; Martinoli, C.; Ravera, M.; Nicolella, C.; Berruti, V.; Leoncini, G.; Ruello, N.; Zagami, P.; Bezante, G.P. Increased renal resistive index in patients with essential hypertension: A marker of organ damage. Nephrol Dial Transpl. 1999, 14, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Iwashima, Y.; Yoshihara, F.; Kamide, K.; Takata, H.; Fujii, T.; Kubota, Y.; Nakamura, S.; Horio, T.; Kawano, Y. Association of Renal Resistive Index With Target Organ Damage in Essential Hypertension. Am. J. Hypertens. 2012, 25, 1292–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nightingale, K.; Soo, M.S.; Nightingale, R.; Trahey, G. Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility. Ultrasound Med. Biol. 2002, 28, 227–235. [Google Scholar] [CrossRef]
- Gallotti, A.; D’Onofrio, M.; Mucelli, R.P. Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen. Radiol. Med. 2010, 115, 889–897. [Google Scholar] [CrossRef]
- Bota, S.; Bob, F.; Sporea, I.; Şirli, R.; Popescu, A. Factors that influence kidney shearwave speed assessed by Acoustic Radiation Force Impulse Elastography in patients without kidney pathology. Ultrasound Med. Biol. 2015, 41, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.-H.; Xu, H.-X.; Fu, H.-J.; Peng, A.; Zhang, Y.-F.; Liu, L.-N. Acoustic Radiation Force Impulse Imaging for Noninvasive Evaluation of Renal Parenchyma Elasticity: Preliminary Findings. PLoS ONE 2013, 8, e68925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.Z.; Yang, B.; Fu, N.H. Preliminary Study on the Kidney Elasticity Quantification in Patients with Chronic Kidney Disease Using Virtual Touch Tissue Quantification. Iran. J. Radiol. 2015, 12, e12026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munger, K.A.; Kost, C.K.; Brenner, B.M., Jr.; Maddox, D.A. The Renal Circulations and Glomerular Ultrafiltration. In Brenner & Rector’s the Kidney, 9th ed.; Taal, M.W., Chertow, G.M., Marsden, P.A., Skorecki, K., Yu, A.S.L., Brenner, B.M., Eds.; Elsevier: Philadelphia, PE, USA, 2012; pp. 94–137. [Google Scholar]
- Asano, K.; Ogata, A.; Tanaka, K.; Ide, Y.; Sankoda, A.; Kawakita, C.; Nishikawa, M.; Ohmori, K.; Kinomura, M.; Shimada, N.; et al. Acoustic Radiation Force Impulse Elastography of the kidneys. Is shear wave velocity affected by tissue fibrosis or renal blood flow? J. Ultrasound Med. 2014, 33, 793–801. [Google Scholar] [CrossRef]
- Grossmann, M.; Tzschätzsch, H.; Lang, S.T.; Guo, J.; Bruns, A.; Dürr, M.; Hoyer, B.F.; Grittner, U.; Lerchbaumer, M.; Trong, M.N.; et al. US Time-Harmonic Elastography for the Early Detection of Glomerulonephritis. Radiology 2019, 292, 676–684. [Google Scholar] [CrossRef]
- Gennisson, J.-L.; Grenier, N.; Combe, C.; Tanter, M. Supersonic Shear Wave Elastography of In Vivo Pig Kidney: Influence of Blood Pressure, Urinary Pressure and Tissue Anisotropy. Ultrasound Med. Biol. 2012, 38, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xia, P.; Lv, K.; Han, J.; Dai, Q.; Li, X.-M.; Chen, L.-M.; Jiang, Y.-X. Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: Preliminary experience in chronic kidney disease. Eur. Radiol. 2014, 24, 1694–1699. [Google Scholar] [CrossRef]
- Menzilcioglu, M.S.; Duymus, M.; Citil, S.; Avcu, S.; Gungor, G.; Sahin, T.; Boysan, S.N.; Altunoren, O.; Sarica, A. Strain wave elastography for evaluation of renal parenchyma in chronic kidney disease. Br. J. Radiol. 2015, 88, 20140714. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Wang, X.-Y.; He, H.-G.; Wei, H.-M.; Kang, L.-K.; Qin, G.-C. Acoustic Radiation Force Impulse Imaging for Non-Invasive Assessment of Renal Histopathology in Chronic Kidney Disease. PLoS ONE 2014, 9, e115051. [Google Scholar] [CrossRef] [Green Version]
- Shiina, T.; Nightingale, K.R.; Palmeri, M.L.; Hall, T.J.; Bamber, J.C.; Barr, R.G.; Castera, L.; Choi, B.I.; Chou, Y.; Cosgrove, D.; et al. WFUMB Guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology. Ultrasound Med. Biol. 2015, 41, 1126–1147. [Google Scholar] [CrossRef] [Green Version]
- Leong, S.S.; Wong, J.H.D.; Shah, M.N.M.; Vijayananthan, A.; Jalalonmuhali, M.; Chow, T.K.; Sharif, N.H.M.; Ng, K.H. Shear wave elastography accurately detects chronic changes in renal histopathology. Nephrology 2021, 26, 38–45. [Google Scholar] [CrossRef]
- Koc, A.S.; Sümbül, H.E. Relationship between renal resistive index and increased renal cortical stiffness in patients with preserved renal function. Eur. J. Ther. 2018, 24, 255–261. [Google Scholar] [CrossRef]
- Koc, A.S.; Demirtas, D.; Gorgulu, F.F.; Sumbul, H.E. Diurnal variation of renal resistive index over 24-hour period in hypertensive patients and healthy controls. Abdom. Radiol. 2019, 44, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value (Mean ± Standard Deviation) | |
---|---|---|
HN Patients | Controls | |
Sex [n (%)] | 80 | 50 |
Males | 48 (60%) | 30 (60%) |
Females | 32 (40%) | 20 (40%) |
Mean age (years) | 58.96 ± 4.09 | 56.27 ± 7.46 |
Mean length of hypertension evolution (months) | 142.27 ± 46.27 | - |
Hypertensive retinopathy | mild: 17 patients | - |
moderate: 55 patients | ||
severe: 8 patients | ||
The drugs used by the HN patients in the moment of investigation | - Angiotensin-converting enzyme inhibitors (ACEI) (10 patients) | - |
- Angiotensin receptor blockers (ARB) (15 patients) | ||
- Beta-blockers (BB) (10 patients) | ||
- Diuretics (D) (7 patients) | ||
- Combined therapy (ACEI + BB; ACEI + D; ARB + BB; ARB + D) (38 patients) |
Parameter | HN Patients | Controls | p |
---|---|---|---|
Systolic BP (mmHg) | 170.31 ± 15.81 | 112.41 ± 10.72 | <0.0001 |
Diastolic BP (mmHg) | 103.43 ± 7.81 | 68.32 ± 9.74 | <0.0001 |
UACR (mg/g) | 297.31 ± 107.81 | 18.93 ± 4.41 | <0.0001 |
eGFR (mL/min/1.73 m2) | 45.90 ± 11.07 | 95.86 ± 7.38 | <0.0001 |
RRI | 0.72 ± 0.02 | 0.63 ± 0.02 | <0.0001 |
SWV (m/s) | 2.37 ± 0.34 | 2.96 ± 0.18 | <0.0001 |
Parameter | Grade 1 Hypertension | Grade 2 Hypertension | p |
---|---|---|---|
Mean length of hypertension evolution (months) | 88.00 ± 21.11 | 147.47 ± 44.70 | <0.0001 |
Systolic BP (mmHg) | 148.57 ± 4.75 | 172.39 ± 14.90 | <0.0001 |
Diastolic BP (mmHg) | 95.00 ± 0.00 | 104.24 ± 7.71 | <0.0001 |
UACR (mg/g) | 174.00 ± 26.12 | 309.13 ± 105.25 | <0.0001 |
eGFR (ml/min/1.73 m2) | 55.85 ± 5.58 | 44.94 ± 11.01 | <0.001 |
RRI | 0.69 ± 0.01 | 0.72 ± 0.02 | <0.01 |
SWV (m/s) | 2.63 ± 0.19 | 2.35 ± 0.35 | <0.01 |
Correlation between SWV and: | r | p |
---|---|---|
UACR (mg/g) | −0.7633 | <0.00001 |
eGFR (ml/min) | 0.7822 | <0.00001 |
RRI | −0.7978 | <0.00001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caraba, A.; Munteanu, A.; Iurciuc, S.; Iurciuc, M. Renal Acoustic Radiation Force Impulse Elastography in Hypertensive Nephroangiosclerosis Patients. Appl. Sci. 2021, 11, 10612. https://doi.org/10.3390/app112210612
Caraba A, Munteanu A, Iurciuc S, Iurciuc M. Renal Acoustic Radiation Force Impulse Elastography in Hypertensive Nephroangiosclerosis Patients. Applied Sciences. 2021; 11(22):10612. https://doi.org/10.3390/app112210612
Chicago/Turabian StyleCaraba, Alexandru, Andreea Munteanu, Stela Iurciuc, and Mircea Iurciuc. 2021. "Renal Acoustic Radiation Force Impulse Elastography in Hypertensive Nephroangiosclerosis Patients" Applied Sciences 11, no. 22: 10612. https://doi.org/10.3390/app112210612
APA StyleCaraba, A., Munteanu, A., Iurciuc, S., & Iurciuc, M. (2021). Renal Acoustic Radiation Force Impulse Elastography in Hypertensive Nephroangiosclerosis Patients. Applied Sciences, 11(22), 10612. https://doi.org/10.3390/app112210612