CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Analysis Methodology
2.2. Implementation of Vortex Generators on a Wind Turbine Blade
3. Results and Discussion
3.1. Validation of CFD Model
3.2. Flow Behavior on the Wind Turbine Blade
3.3. Aerodynamic Characteristics of DU Airfoil with VG
3.4. Investigation of the Influence of VG Design Parameters
3.5. Aerodynamic Characteristics of Wind Turbine Blade with VG
4. Conclusions
- A CFD analysis of multi-MW wind turbine blades was performed, and subsequently validated by comparing the results with those obtained with the GH Bladed design values.
- The influence of the VG design parameters was investigated using CFD analysis, which confirmed that the VG reduced the occurrence of separation flow, increased the lift, and reduced the drag at high angles of attack.
- Analysis of the flow characteristics of the blade with the mounted VGs confirmed that the tip vortex generated by the VG reduced the separation area by allowing the high-energy fluid to flow to the low-energy separation area.
- The VGs were confirmed to play an important role by improving the aerodynamics of multi-MW wind turbines by 2.80% at the rated wind speed. This was confirmed by the simulation at the rated wind speed with more than 55 million elements.
- The results of this study are expected to be useful for selecting the mounting position and shape of the VG by conducting a full-scale simulation by automating the construction of the simulation environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kuroiwa, T.; Karikomi, K.; Hayashi, Y.; Shibata, M.; Ueda, Y. New products and technologies of Mitsubishi wind turbines. Tech. Rev. 2004, 41, 1–5. [Google Scholar]
- Paliszewski, D. SWT-3.0-101 an Example of Systems Engineering. In Proceedings of the NREL Wind Energy Systems Engineering Workshop, Boulder, CO, USA, 14 December 2010. [Google Scholar]
- Grasso, F. Development of Thick Airfoils for Wind Turbines. In Proceedings of the 50th AIAA Aerospace Sciences Meeting, Nashville, TN, USA, 9–12 January 2012; p. AIAA2012-0236. [Google Scholar]
- Berg, D.E. Aerodynamic and aeroacoustic properties of flatback airfoils. In Proceedings of the Meeting and Exhibit 27th ASME Wind Energy Symposium, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Kim, S.H.; Kim, C.G. Optimal Design of Composite Stiffened Panel with Cohesive Elements using Micro-Genetic Algorithm. J. Compos. Mater. 2008, 42, 2259–2273. [Google Scholar] [CrossRef]
- Yoshinori, U. Development of Next Generation 2 MW Class Large Wind Turbines. Mitsubishi Heavy Ind. Tech. Rev. 2004, 41, 1–4. [Google Scholar]
- Eggleston, D.M.; Stoddard, F.S. Wind Turbine Engineering Design; Van Nostrand Reinhoid: New York, NY, USA, 1987. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained; John Wiley & Sons Ltd.: New York, NY, USA, 2002. [Google Scholar]
- Kishinami, K.; Taniguchi, H.; Suzuki, J.; Ibano, H.; Kazunou, T.; Turuhami, M. Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine. Energy 2005, 30, 2089–2100. [Google Scholar] [CrossRef]
- Fuglsang, P.; Bak, C.; Schepers, J.G.; Bulder, B.; Cockerill, T.T.; Claiden, P.; Olesen, A.; Van Rossen, R. Site specific design optimization of wind turbines of 1.5–2.0 MW wind turbines. Wind Energy 2002, 5, 261–279. [Google Scholar] [CrossRef]
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook, Wind Energy; Wiley: Chichester, UK, 2001. [Google Scholar]
- Hansen, M.O.L.; Johansen, J. Tip Studies Using CFD and Comparison with Tip Loss Models. Wind Energy 2004, 7, 343–356. [Google Scholar] [CrossRef]
- Martinez, J.; Bernabini, L.; Probst, O.; Rodriguez, C. An Improved BEM Model for the Power Curve Prediction of Stall-regulated Wind Turbines. Wind Energy 2005, 8, 385–402. [Google Scholar] [CrossRef]
- Jeong, J.; Yoo, C.; Lee, J.; Kim, K.H.; Choi, J.-W. 3-Dimensional Flow Field Analysis and Tip Shape Design in a 2.5 MW Wind Turbine Blade. In Proceedings of the Korea Wind Energy Association, Spring Conference, Daegu, Korea, 7–8 April 2011; pp. 51–56. [Google Scholar]
- Jeong, J.; Yoo, C.; Lee, J.; Kim, K.H.; Choi, J.-W. 3-Dimensional Flow Field Analysis and Tip Shape Design in a Wind Turbine Blade. In Proceedings of the Korean Society for Computational Fluids Engineering, Spring Conference, Jeju, Korea, 26 May 2011; pp. 243–248. [Google Scholar]
- Velte, C.M.; Hansen, M.O.L.; Meyer, K.E.; Fuglsang, P. Evaluation of the performance of vortex generators on the DU 91-W2-250 profile using stereoscopic PIV. In Proceedings of the 12th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2008), Orlando, FL, USA, 29 June–2 July 2007; pp. 263–267. [Google Scholar]
- Hansen, M.O.L.; Velte, C.M.; Øye, S.; Hansen, R.; Sørensen, N.N.; Madsen, J.; Mikkelsen, R. Aerodynamically shaped vortex generators. Wind Energy 2016, 19, 563–567. [Google Scholar] [CrossRef]
- Kusunose, K.; Yu, N.J. Vortex Generator Installation Drag on an Airplane Near Its Cruise Condition. J. Aircr. 2003, 40, 1145. [Google Scholar] [CrossRef]
- Khoshvaght-Aliabadi, M.; Zangouei, S.; Hormozi, F. Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation. Int. J. Therm. Sci. 2015, 88, 180–192. [Google Scholar] [CrossRef]
- Astolfi, D.; Castellani, F.; Fravolini, M.L.; Cascianelli, S.; Terzi, L. Precision computation of wind turbine power upgrades: An aerodynamic and control optimization test case. J. Energy Resour. Technol. 2019, 141, 051205. [Google Scholar] [CrossRef]
- Hwangbo, H.; Ding, Y.; Eisele, O.; Weinzierl, G.; Lang, U.; Pechlivanoglou, G. Quantifying the effect of vortex generator installation on wind power production: An academia-industry case study. Renew. Energy 2017, 113, 1589–1597. [Google Scholar] [CrossRef]
- Sørensen, N.N.; Zahle, F.; Bak, C.; Vronsky, T. Prediction of the Effect of Vortex Generators on Airfoil Performance. J. Phys. 2014, 524, 012019. [Google Scholar] [CrossRef] [Green Version]
- Øye, S. The effect of vortex generators on the performance of the ELKRAFT 1000 KW turbine. In Proceedings of the Aerodynamics of Wind Turbines: 9th IEA Symposium, Stockholm, Sweden, 11–12 December 1995; pp. 9–14. [Google Scholar]
- Mueller-Vahl, H.; Pechlivanoglou, G.; Nayeri, C.; Paschereit, C. Vortex generators for wind turbine blades: A combined wind tunnel and wind turbine parametric study. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012; pp. 899–914. [Google Scholar]
- Troldborg, N.; Zahle, F.; Sørensen, N.N. Simulations of wind turbine rotor with vortex generators. J. Phys. Conf. Ser. 2016, 753, 022057. [Google Scholar] [CrossRef] [Green Version]
- Aramendia, I.; Fernandez-Gamiz, U.; Ramos-Hernanz, J.A.; Sancho, J.; Lopez-Guede, J.M.; Zulueta, E. Flow control devices for wind turbines. In Energy Harvesting and Energy Efficiency; Springer: Cham, Switzerland, 2017; pp. 629–655. [Google Scholar]
- Chillon, S.; Uriarte-Uriarte, A.; Aramendia, I.; Martínez-Filgueira, P.; Fernandez-Gamiz, U.; Ibarra-Udaeta, I. jBAY modeling of vane-type vortex generators and study on airfoil aerodynamic performance. Energies 2020, 13, 2423. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, T.; Wang, H.; Shi, H.; Li, M. Investigate aerodynamic performance of wind turbine blades with vortex generators at the transition area. Wind Eng. 2021, 1–15, 0309524X211038542. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Zulueta, E.; Boyano, A.; Ansoategui, I.; Uriarte, I. Five megawatt wind turbine power output improvements by passive flow control devices. Energies 2017, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- ANSYS Inc. ANSYS CFX-Solver Theory Guide. Release 12.1. 2009. Available online: www.ansys.com (accessed on 14 November 2021).
- Harrad Hassan, G.; Partners Ltd. Bladed Theory Manual Version 4.3. 2012. Available online: www.gl-harradhassan.com (accessed on 14 November 2021).
- Li, X.K.; Liu, W.; Zhang, T.J.; Wang, P.M.; Wang, X.D. Analysis of the effect of vortex generator spacing on boundary layer flow separation control. Appl. Sci. 2019, 9, 5495. [Google Scholar] [CrossRef] [Green Version]
- Orszagt, S.A. Analytical theories of turbulence. J. Fluid Mech. 1970, 41, 363–386. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations, i. the basic experiment. Mon. Weather. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Brdina, J.E.; Huang, P.G.; Coakley, T.J. Turbulence modeling validation, testing and development. NASA Tech. Memo. 1997, 110446, 147. [Google Scholar]
- Wilcos, D.C. Re-assessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 26, 1299–1310. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Andre, F.P.R.; Armando, M.A.; Herbert, M.G. An airfoil optimization technique for wind turbines. In Proceedings of the 21st Brazilian Congress of Mechanical Engineering, Natal, Brazil, 24–28 October 2011. [Google Scholar]
- Chen, X.M.; Agarwal, R. Optimization of flatback airfoils for wind-turbine blades using a genetic algorithm. J. Aircr. 2012, 49, 622–629. [Google Scholar] [CrossRef]
- Langtry, R.B.; Menter, F.R. Transition Modeling for General CFD Applications in Aeronautics. AIAA J. 2005, 522. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
Category | Value |
---|---|
Simulation region | Volume |
Number of blades | 3 |
Rotor diameter | 113 m |
Rotational speed | variable |
Rated wind speed | 10 m/s |
Rated wind power | 2.3 MW |
Rotational direction | clockwise (viewed from upwind) |
Blade profile | DU airfoils |
Target wind class | Class II |
Category | Value |
---|---|
Number of VGs per blade | 45 |
Mounting position | 10~30% of blade length from blade root, 20% of chord length from leading edge |
Layout | 1.5% |
Length | 1.5% |
Height | 1% |
Angle to the direction of the chord | 11° |
Simulation Area | Volume (-) | Number of Elements (EA) |
---|---|---|
Blade | Rotationary | 4,060,800 |
Stationary | 576,000 | |
Total | 4,636,800 |
Case | Wind Speed (m/s) | Angular Velocity (rad/s) | GH-Bladed Power (kW) | CFD Power (kW) | Note |
---|---|---|---|---|---|
1 | 7.5 | 1.41372 | 1232.18 | 1235.7 | 0.24% |
2 | 10.0 | 1.41372 | 2491.71 | 2432.4 | 2.36% |
Simulation Area | Volume (-) | Number of Elements (EA) |
---|---|---|
VG airfoil | VG | 1,932,483 |
Region surrounding the VG | 3,924,000 | |
Total | 5,856,483 |
Case | Layout (l) | Length (L) | Height (h) |
---|---|---|---|
01 | 1.5% | 1.5% | 0.75% |
02 | 1.5% | 1.5% | 1% |
03 | 1.5% | 1.5% | 1.25% |
04 | 1.5% | 1.75% | 0.75% |
05 | 1.5% | 1.75% | 1% |
06 | 1.5% | 1.75% | 1.25% |
07 | 1.5% | 2% | 0.75% |
08 | 1.5% | 2% | 1% |
09 | 1.5% | 2% | 1.25% |
10 | 2% | 1.5% | 0.75% |
11 | 2% | 1.5% | 1% |
12 | 2% | 1.5% | 1.25% |
13 | 2% | 1.75% | 0.75% |
14 | 2% | 1.75% | 1% |
15 | 2% | 1.75% | 1.25% |
16 | 2% | 2% | 0.75% |
17 | 2% | 2% | 1% |
18 | 2% | 2% | 1.25% |
19 | 2.5% | 1.5% | 0.75% |
20 | 2.5% | 1.5% | 1% |
21 | 2.5% | 1.5% | 1.25% |
22 | 2.5% | 1.75% | 0.75% |
23 | 2.5% | 1.75% | 1% |
24 | 2.5% | 1.75% | 1.25% |
25 | 2.5% | 2% | 0.75% |
26 | 2.5% | 2% | 1% |
27 | 2.5% | 2% | 1.25% |
Case | Cl | Cd | Maximum Vorticity at Position in the Direction of the Chord (1/s) | |||
---|---|---|---|---|---|---|
25% | 50% | 75% | 100% | |||
01 | 2.026 | 0.0285 | 10,363 | 3078 | 3033 | 1625 |
02 | 2.010 | 0.0302 | 10,289 | 3370 | 3054 | 1766 |
03 | 1.974 | 0.0627 | 13,641 | 3773 | 2535 | 1200 |
04 | 2.013 | 0.0293 | 13,554 | 3245 | 2472 | 1154 |
05 | 1.990 | 0.0327 | 16,308 | 3712 | 2374 | 975 |
06 | 1.978 | 0.0344 | 14,352 | 3912 | 2449 | 1128 |
07 | 2.014 | 0.0291 | 13,926 | 3205 | 2335 | 1128 |
08 | 1.996 | 0.0319 | 16,066 | 3698 | 2338 | 1101 |
09 | 1.978 | 0.0348 | 15,392 | 3675 | 2233 | 1112 |
10 | 2.113 | 0.0289 | 12,809 | 3092 | 2497 | 1205 |
11 | 2.001 | 0.0315 | 13,846 | 3471 | 2446 | 1061 |
12 | 1.991 | 0.0332 | 12,298 | 2876 | 1965 | 969 |
13 | 1.993 | 0.0306 | 13,626 | 2890 | 1859 | 830 |
14 | 2.004 | 0.0311 | 14,949 | 3463 | 2423 | 1141 |
15 | 1.854 | 0.0220 | 12,029 | 2490 | 1392 | 674 |
16 | 2.019 | 0.0287 | 14,391 | 3001 | 2391 | 1209 |
17 | 2.004 | 0.0314 | 16,751 | 3452 | 2255 | 1117 |
18 | 2.000 | 0.0309 | 16,487 | 3616 | 2237 | 1071 |
19 | 2.019 | 0.0285 | 13,107 | 2865 | 2409 | 1147 |
20 | 2.008 | 0.0309 | 14,943 | 3211 | 2177 | 1111 |
21 | 2.002 | 0.0322 | 12,821 | 2622 | 1704 | 955 |
22 | 2.021 | 0.0283 | 13,380 | 3134 | 2404 | 1235 |
23 | 2.010 | 0.0307 | 15,369 | 3498 | 2174 | 1196 |
24 | 1.996 | 0.0331 | 16,024 | 3433 | 2104 | 1097 |
25 | 2.020 | 0.0282 | 13,507 | 3228 | 2336 | 1266 |
26 | 2.009 | 0.0308 | 16,087 | 3596 | 2106 | 1195 |
27 | 2.002 | 0.0325 | 15,635 | 2373 | 1614 | 966 |
Simulation Region | Volume | No. of Elements |
---|---|---|
VG Blade | VG | 4,397,440 |
Rotatory | 49,693,662 | |
Stationary | 1,584,000 | |
Total | 55,675,102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, H.-G.; Park, S.; Ha, K.; Jeong, J.-H. CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine. Appl. Sci. 2021, 11, 10764. https://doi.org/10.3390/app112210764
Moon H-G, Park S, Ha K, Jeong J-H. CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine. Applied Sciences. 2021; 11(22):10764. https://doi.org/10.3390/app112210764
Chicago/Turabian StyleMoon, Hyeon-Gi, Sunho Park, Kwangtae Ha, and Jae-Ho Jeong. 2021. "CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine" Applied Sciences 11, no. 22: 10764. https://doi.org/10.3390/app112210764
APA StyleMoon, H.-G., Park, S., Ha, K., & Jeong, J.-H. (2021). CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine. Applied Sciences, 11(22), 10764. https://doi.org/10.3390/app112210764