Chemical Composition of White Wines Produced from Different Grape Varieties and Wine Regions in Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Wine Samples
2.3. Sample Preparation
2.4. FTIR Analyses
2.5. Spectrophotometric Analyses
2.5.1. Determination of Total Polyphenolic Content
2.5.2. Determination of Total Antioxidant Activity (TAA)
2.6. Statistical Analysis and Visualisation
3. Results and Discussion
3.1. Influence of Variety
3.2. Influence of Wine Region
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, M.G.; Timberlake, C.F.; Bridle, P.; Vallis, L. Red wine quality: Correlations between colour, aroma and flavour and pigment and other parameters of young Beaujolais. J. Sci. Food Agric. 1978, 29, 715–727. [Google Scholar] [CrossRef]
- Popovic-Djordjevic, J.; Pejin, B.; Dramicanin, A.; Jovic, S.; Vujovic, D.; Zunic, D.; Ristic, R. Wine Chemical Composition and Radical Scavenging Activity of Some Cabernet Franc Clones. Curr. Pharm. Biotechnol. 2017, 18, 343–350. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. Metabolomics: An emerging tool for wine characterization and the investigation of health benefits. In Engineering Tools in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Amsterdam, The Netherlands, 2019; pp. 315–350. [Google Scholar]
- Ivanova-Petropulos, V.; Hermosín-Gutiérrez, I.; Boros, B.; Stefova, M.; Stafilov, T.; Vojnoski, B.; Dörnyei, Á.; Kilár, F. Phenolic compounds and antioxidant activity of Macedonian red wines. J. Food Compos. Anal. 2015, 41, 1–14. [Google Scholar] [CrossRef]
- Gnilomedova, N.V.; Anikina, N.S.; Gerzhikova, V.G. Profile of sugars in a grape-wine system as the identifying indicator of the authenticity of wine products. Foods Raw Mater. 2018, 6, 191. [Google Scholar] [CrossRef]
- Pavloušek, P.; Kumšta, M. Profiling of primary metabolites in grapes of interspecific grapevine varieties: Sugars and organic acids. Czech J. Food Sci. 2011, 29, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A.; Kafkas, E.; Tangolar, S. Distribution of major sugars, acids and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development. Span. J. Agric. Res. 2010, 2, 425–433. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Perez-Wom, M.; Habib, G.; Giovagnoli-Vicuña, C.; Cañas-Sarazua, R.; Tabilo-Munizaga, G.; Salazar, F.N. Oenological and Quality Characteristic on Young White Wines (Sauvignon Blanc): Effects of High Hydrostatic Pressure Processing. J. Food Qual. 2017, 2017, e8524073. [Google Scholar] [CrossRef] [Green Version]
- Philipp, C.; Eder, P.; Brandes, W.; Patzl-Fischerleitner, E.; Eder, R. The Pear Aroma in the Austrian Pinot Blanc Wine Variety: Evaluation by Means of Sensorial-Analytical-Typograms with regard to Vintage, Wine Styles, and Origin of Wines. J. Food Qual. 2018, 2018, e5123280. [Google Scholar] [CrossRef]
- Ivanova, V.; Vojnoski, B.; Stefova, M. Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. J. Food Sci. Technol. 2012, 49, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, V.; Vojnoski, B.; Stefova, M. Effect of the winemaking practices and aging on phenolic content of Smederevka and Chardonnay wines. Food Bioprocess Technol. 2011, 4, 1512–1518. [Google Scholar] [CrossRef]
- Mitrevska, K.; Grigorakis, S.; Loupassaki, S.; Calokerinos, A.C. Antioxidant activity and polyphenolic content of North Macedonian wines. Appl. Sci. 2020, 10, 2010. [Google Scholar] [CrossRef] [Green Version]
- Robles, A.; Fabjanowicz, M.; Chmiel, T.; Płotka-Wasylka, J. Determination and identification of organic acids in wine samples. Problems and challenges. TrAC—Trends Anal. Chem. 2019, 120, 115630. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Paixão, N.; Perestrelo, R.; Marques, J.C.; Câmara, J.S. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem. 2007, 105, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Ailer, Š.; Valšíková, M.; Jedlička, J.; Mankovecký, J.; Baroň, M. Influence of Sugar and Ethanol Content and Color of Wines On the Sensory Evaluation: From Wine Competition “Nemčiňany Wine Days” in Slovak Republic (2013–2016). Erwerbs-Obstbau 2020, 62, 9–16. [Google Scholar] [CrossRef]
- Ailer, Š. Vinárstvo & Somelierstvo (Winery & Sommelier Proficiency), 1st ed.; Baštan: Olomouc, Czech Republic, 2016; p. 216. [Google Scholar]
- Bae, H.; Yun, S.K.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H.; Jun, J.H. Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J. Appl. Bot. Food Qual. 2014, 87. [Google Scholar] [CrossRef]
- Carneiro, A.; Couto, J.A.; Mena, C.; Queiroz, J.; Hogg, T. Activity of wine against Campylobacter jejuni. Food Control. 2008, 19, 800–805. [Google Scholar] [CrossRef]
- Daglia, M.; Papetti, A.; Grisoli, P.; Aceti, C.; Dacarro, C.; Gazzani, G. Antibacterial activity of red and white wine against oral streptococci. J. Agric. Food Chem. 2007, 55, 5038–5042. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento Silva, F.L.; Schmidt, E.M.; Messias, C.L.; Eberlin, M.N.; Sawaya, A.C.H.F. Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Anal. Methods. 2015, 7, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2021; Volume 2, p. 560. [Google Scholar]
- Xu, S.; Zhu, J.; Zhao, Q.; Gao, J.; Zhang, H.; Hu, B. Quality evaluation of Cabernet Sauvignon wines in different vintages by 1H nuclear magnetic resonance-based metabolomics. Open Chem. 2021, 19, 385–399. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Naceva, Z.; Sándor, V.; Makszin, L.; Deutsch-Nagy, L.; Berkics, B.; Stafilov, T.; Kilár, F. Fast determination of lactic, succinic, malic, tartaric, shikimic, and citric acids in red Vranec wines by CZE-ESI-QTOF-MS. Electrophoresis 2018, 39, 1597–1605. [Google Scholar] [CrossRef]
- Pokrývková, J.; Ailer, Š.; Jedlička, J.; Chlebo, P.; Jurík, Ľ. The Use of a Targeted Must Oxygenation Method in the Process of Developing the Archival Potential of Natural Wine. Appl. Sci. 2020, 10, 4810. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis vinifera Cultivars Albillo Dorado and Montonera del Casar: A Comparative Study with Airén. Foods 2020, 9, 1282. [Google Scholar] [CrossRef] [PubMed]
- Ivanova-Petropulos, V.; Durakova, S.; Ricci, A.; Parpinello, G.P.; Versari, A. Extraction and evaluation of natural occurring bioactive compounds and change in antioxidant activity during red winemaking. J. Food Sci. Technol. 2016, 53, 2634–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kačániová, M.; Ailer, Š.; Ivanišová, E.; Miklášová, K. Plody Vitis vinifera v aspektoch zastúpenia niektorých nutrične špecifických zložiek a zo spektra ich multiúčelovej využiteľnosti v oblasti spotreby. In Potenciál Úžitkových Záhrad, Vinohradníctvo a Domáca Spotrebiteľská Sféra, 1st ed.; Regionálna Rozvojová Agentúra pre Rozvoj Dolného Zemplína: Trebišov, Slovakia, 2019; pp. 10–12. [Google Scholar]
- Bajčan, D.; Árvay, J.; Vollmannová, A.; Bystrická, J.; Trebichalskỳ, P.; Harangozo, L.; Šimanský, V. Antioxidant properties, total phenolic and total flavonoid content of the Slovak white wines-Welschriesling and Chardonnay. Potravinárstvo Slovak J. Food Sci. 2017, 11, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Čeryová, N.; Bajčan, D.; Lidiková, J.; Musilová, J.; Šnirc, M.; Jančo, I.; Franková, H.; Bláhová, M. Phenolic content and antioxidant activity of slovak varietal wines of muscat type. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e4292. Available online: https://www.jmbfs.org/wp-content/uploads/2021/04/3802-Article-Text-preprint.pdf (accessed on 10 October 2021). [CrossRef]
- Staško, A.; Brezová, V.; Mazúr, M.; Čertík, M.; Kaliňák, M.; Gescheidt, G. A comparative study on the antioxidant properties of Slovakian and Austrian wines. LWT—Food Sci. Technol. 2008, 41, 2126–2135. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, A.; Dudjak, E.; Fernández, E.; Pivec, V. Content polyphenolic antioxidants and phenolcarboxylic acids in selected parts of yacon. In Vitamins 2003-Přírodní Antioxidanty a Volné Radikály; Horna, A., Ed.; Univerzita Pardubice: Pardubice, Czech Republic, 2003; pp. 89–97. [Google Scholar]
- Oscar, S.-V.; Fernando, O.-C.L.; del Pilar, C.-M.M. Total polyphenols content in white wines on a microfluidic flow injection analyzer with embedded optical fibers. Food Chem. 2017, 221, 1062–1068. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing [Internet]; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 October 2021).
- QGIS. QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org./ (accessed on 10 January 2021).
- Boulton, R. The relationships between total acidity, titratable acidity and pH in grape tissue. Vitis 1980, 19, 113–120. [Google Scholar]
- Regmi, U.; Palma, M.; Barroso, C.G. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Anal. Chim. Acta. 2012, 732, 137–144. [Google Scholar] [CrossRef]
- Davis, C.R.; Wibowo, D.; Eschenbruch, R.; Lee, T.H.; Fleet, G.H. Practical Implications of Malolactic Fermentation: A Review. Am. J. Enol Vitic. 1985, 36, 290–301. [Google Scholar]
- Jégou, S.; Hoang, D.A.; Salmon, T.; Williams, P.; Oluwa, S.; Vrigneau, C.; Doco, T.; Marchal, R. Effect of grape juice press fractioning on polysaccharide and oligosaccharide compositions of Pinot meunier and Chardonnay Champagne base wines. Food Chem. 2017, 232, 49–59. [Google Scholar] [CrossRef]
- Márquez, K.; Contreras, D.; Salgado, P.; Mardones, C. Production of hydroxyl radicals and their relationship with phenolic compounds in white wines. Food Chem. 2019, 271, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Mato, I.; Suárez-Luque, S.; Huidobro, J.F. Simple determination of main organic acids in grape juice and wine by using capillary zone electrophoresis with direct UV detection. Food Chem. 2007, 102, 104–112. [Google Scholar] [CrossRef]
- Peres, R.G.; Moraes, E.P.; Micke, G.A.; Tonin, F.G.; Tavares, M.F.M.; Rodriguez-Amaya, D.B. Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection. Food Control. 2009, 20, 548–552. [Google Scholar] [CrossRef]
- Restani, P.; Persico, A.; Ballabio, C.; Fuggetta, D.; Moro, E. Simultaneous determination of glycerol, fructose and glucose for quality control of wines. In Proceedings of the XXXth World Congress of Vine and Wine Budapest, Hungary, Budapest, 10–16 June 2007; Available online: https://www.researchgate.net/profile/Patrizia-Restani/publication/242526786_SIMULTANEOUS_DETERMINATION_OF_GLYCEROL_FRUCTOSE_AND_GLUCOSE_FOR_QUALITY_CONTROL_OF_WINES/links/56dd5a0208aed3a79eb2ab0d/SIMULTANEOUS-DETERMINATION-OF-GLYCEROL-FRUCTOSE-AND-GLUCOSE-FOR-QUALITY-CONTROL-OF-WINES.pdf (accessed on 10 October 2021).
- Coelho, E.M.; da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Šćepanović, R.P.; Wendelin, S.; Raičević, D.; Eder, R. Characterization of the phenolic profile of commercial Montenegrin red and white wines. Eur. Food Res. Technol. 2019, 245, 2233–2245. [Google Scholar] [CrossRef]
- Bednarska, S.; Dabrowa, A.; Kisala, J.; Kasprzyk, I. Antioxidant properties and resveratrol content of Polish Regent wines from Podkarpacie region. Czech J. Food Sci. 2019, 37, 252–259. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef]
- de Quirós, A.R.B.; Lage-Yusty, M.A.; López-Hernández, J. HPLC-analysis of polyphenolic compounds in Spanish white wines and determination of their antioxidant activity by radical scavenging assay. Food Res. Int. 2009, 42, 1018–1022. [Google Scholar] [CrossRef]
- Hopfer, H.; Nelson, J.; Ebeler, S.E.; Heymann, H. Correlating wine quality indicators to chemical and sensory measurements. Molecules 2015, 20, 8453–8483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heymann, H.; Robinson, A.L.; Buscema, F.; Stoumen, M.E.; King, E.S.; Hopfer, H.; Boulton, R.B.; Ebeler, S.E. Effect of Region on the Volatile Composition and Sensory Profiles of Malbec and Cabernet Sauvignon Wines. In V: Advances in Wine Research; ACS Publications: Washington, DC, USA, 2015; pp. 109–122. [Google Scholar] [CrossRef]
- King, E.S.; Stoumen, M.; Buscema, F.; Hjelmeland, A.K.; Ebeler, S.E.; Heymann, H.; Boulton, R.B. Regional sensory and chemical characteristics of Malbec wines from Mendoza and California. Food Chem. 2014, 143, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Urvieta, R.; Buscema, F.; Bottini, R.; Coste, B.; Fontana, A. Phenolic and sensory profiles discriminate geographical indications for Malbec wines from different regions of Mendoza, Argentina. Food Chem. 2018, 265, 120–127. [Google Scholar] [CrossRef]
- Makris, D.P.; Kallithraka, S.; Mamalos, A. Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta 2006, 70, 1143–1152. [Google Scholar] [CrossRef]
- Milovanovic, M.; Žeravík, J.; Obořil, M.; Pelcová, M.; Lacina, K.; Cakar, U.; Petrovic, A.; Glatz, Z.; Skládal, P. A novel method for classification of wine based on organic acids. Food Chem. 2019, 284, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-J.; Duan, Y.-T.; Zhang, Y.-F.; Pan, Q.-H.; Li, J.-M.; Huang, W.-D. Determination of Organic Acids in Red Wine and Must on Only One RP-LC-Column Directly After Sample Dilution and Filtration. Chroma 2009, 69, 1391–1395. [Google Scholar] [CrossRef]
Variety | Sample Abbreviation | Wine Type | Wine Region | Winery |
---|---|---|---|---|
Chardonnay | CH 1 | dry | Južnoslovenská | Wine Manufacturer A |
Chardonnay | CH 4 | dry | Stredoslovenská | Wine Manufacturer B |
Chardonnay | CH 7 | dry | Malokarpatská | Wine Manufacturer C |
Chardonnay | CH 10 | dry | Nitrianska | Wine Manufacturer D |
Pinot Blanc | PB 2 | dry | Južnoslovenská | Wine Manufacturer A |
Pinot Blanc | PB 5 | dry | Stredoslovenská | Wine Manufacturer B |
Pinot Blanc | PB 8 | semi-dry | Malokarpatská | Wine Manufacturer C |
Pinot Blanc | PB 11 | semi-dry | Nitrianska | Wine Manufacturer D |
Pinot Gris | PG 3 | dry | Južnoslovenská | Wine Manufacturer A |
Pinot Gris | PG 6 | dry | Stredoslovenská | Wine Manufacturer B |
Pinot Gris | PG 9 | semi-dry | Malokarpatská | Wine Manufacturer C |
Pinot Gris | PG 12 | dry | Nitrianska | Wine Manufacturer D |
Wine Sample | Alcohol | Total Acids | Tartaric Acid | Malic Acid | Lactic Acid | Fructose | Glucose | TPC | TAA |
---|---|---|---|---|---|---|---|---|---|
[%] | [g L−1] | [g L−1] | [g L−1] | [g L−1] | [g L−1] | [g L−1] | [mg L−1 GAE] | [% Inhibition DPPH] | |
CH1 | 12.23 ± 0.09 | 6.37 ± 0.05 | 2.61 ± 0.02 | 2.50 ± 0.08 | 0.31 ± 0.06 | 6.10 ± 0.08 | 1.33 ± 0.05 | 403.64 ± 9.41 | 59.43 ± 0.30 |
PB2 | 12.50 ± 0.00 | 6.63 ± 0.05 | 2.78 ± 0.04 | 2.43 ± 0.12 | 0.36 ± 0.06 | 4.8 ± 0.14 | 1.03 ± 0.17 | 283.19 ± 8.03 | 60.74 ± 0.32 |
PG3 | 12.40 ± 0.00 | 5.43 ± 0.05 | 2.24 ± 0.01 | 1.87 ± 0.05 | 0.52 ± 0.08 | 2.17 ± 0.12 | 2.40 ± 0.16 | 307.77 ± 20.47 | 67.40 ± 0.44 |
CH4 | 12.20 ± 0.00 | 5.47 ± 0.05 | 2.93 ± 0.03 | 0.07 ± 0.05 | 1.30 ± 0.02 | 0.63 ± 0.12 | 0.30 ± 0.08 | 329.89 ± 9.41 | 60.32 ± 1.03 |
PB5 | 12.37 ± 0.05 | 5.77 ± 0.05 | 2.56 ± 0.06 | 1.03 ± 0.19 | 0.98 ± 0.08 | 0.53 ± 0.25 | 0.23 ± 0.17 | 379.06 ± 4.92 | 60.96 ± 0.57 |
PG6 | 11.90 ± 0.00 | 5.77 ± 0.05 | 2.77 ± 0.04 | 0.77 ± 0.12 | 0.82 ± 0.03 | 0.73 ± 0.05 | <0.20 | 268.44 ± 8.03 | 72.53 ± 0.35 |
CH7 | 12.70 ± 0.00 | 5.23 ± 0.05 | 2.32 ± 0.06 | 1.50 ± 0.08 | 0.86 ± 0.08 | 1.7 ± 0.08 | 0.83 ± 0.05 | 339.72 ± 9.41 | 61.60 ± 0.24 |
PB8 | 12.20 ± 0.00 | 5.23 ± 0.05 | 2.09 ± 0.07 | 1.10 ± 0.14 | 1.11 ± 0.04 | 4.63 ± 0.09 | 3.33 ± 0.05 | 312.68 ± 8.03 | 59.98 ± 0.51 |
PG9 | 11.50 ± 0.00 | 5.67 ± 0.05 | 2.57 ± 0.03 | 1.17 ± 0.05 | 0.87 ± 0.05 | 5.33 ± 0.09 | 3.03 ± 0.09 | 256.15 ± 9.41 | 51.06 ± 0.27 |
CH10 | 13.80 ± 0.00 | 5.10 ± 0.001 | 1.62 ± 0.09 | 1.00 ± 0.08 | 1.53 ± 0.03 | 6.80 ± 0.14 | <0.20 | 396.26 ± 23.41 | 71.87 ± 0.95 |
PB11 | 12.77 ± 0.05 | 4.93 ± 0.05 | 2.04 ± 0.08 | 1.87 ± 0.05 | 0.14 ± 0.03 | 6.73 ± 0.09 | 0.3 ± 0.16 | 283.19 ± 8.03 | 52.78 ± 0.47 |
PG12 | 13.67 ± 0.05 | 4.63 ± 0.09 | 1.63 ± 0.06 | 1.63 ± 0.12 | 0.85 ± 0.05 | 1.63 ± 0.09 | 0.67 ± 0.12 | 381.51 ± 8.03 | 66.80 ± 0.66 |
Mean | 12.52 | 5.52 | 2.35 | 1.41 | 0.8 | 3.48 | 1.13 | 328.46 | 62.12 |
Min | 11.50 | 4.63 | 1.62 | 0.07 | 0.01 | 0.53 | 0.01 | 256.15 | 51.06 |
Max | 13.80 | 6.63 | 2.93 | 2.50 | 1.53 | 6.80 | 3.33 | 403.64 | 72.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakabová, S.; Fikselová, M.; Mendelová, A.; Ševčík, M.; Jakab, I.; Aláčová, Z.; Kolačkovská, J.; Ivanova-Petropulos, V. Chemical Composition of White Wines Produced from Different Grape Varieties and Wine Regions in Slovakia. Appl. Sci. 2021, 11, 11059. https://doi.org/10.3390/app112211059
Jakabová S, Fikselová M, Mendelová A, Ševčík M, Jakab I, Aláčová Z, Kolačkovská J, Ivanova-Petropulos V. Chemical Composition of White Wines Produced from Different Grape Varieties and Wine Regions in Slovakia. Applied Sciences. 2021; 11(22):11059. https://doi.org/10.3390/app112211059
Chicago/Turabian StyleJakabová, Silvia, Martina Fikselová, Andrea Mendelová, Michal Ševčík, Imrich Jakab, Zuzana Aláčová, Jana Kolačkovská, and Violeta Ivanova-Petropulos. 2021. "Chemical Composition of White Wines Produced from Different Grape Varieties and Wine Regions in Slovakia" Applied Sciences 11, no. 22: 11059. https://doi.org/10.3390/app112211059
APA StyleJakabová, S., Fikselová, M., Mendelová, A., Ševčík, M., Jakab, I., Aláčová, Z., Kolačkovská, J., & Ivanova-Petropulos, V. (2021). Chemical Composition of White Wines Produced from Different Grape Varieties and Wine Regions in Slovakia. Applied Sciences, 11(22), 11059. https://doi.org/10.3390/app112211059