Assessment of Antioxidant Capacity and Phytochemical Composition of Brown and Red Seaweeds Sampled off Red Sea Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweeds Collection
2.2. Biochemical Composition Analysis
2.2.1. Estimation of Total Carbohydrates, Protein, and Dietary Fiber of Seaweeds
2.2.2. Estimation of the Elements Content of Algae
2.2.3. Estimation of Lipid
Total Lipid Contents
Composition of Fatty Acids
2.2.4. Determination of Amino Acids
2.2.5. Estimation of Total Phenols
2.2.6. Estimation of Total Flavonoid Content
2.2.7. Estimation of Ascorbic Acid (Vitamin C) Content
2.2.8. Estimation of Beta Carotene
2.3. Antioxidant Activity Assay
2.3.1. DPPH Radical Scavenging Capacity
2.3.2. Total Antioxidant Capacity (TAC)
2.3.3. Estimation of Total Reducing Capacity (TRC)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Contents
3.2. Antioxidant Activity
3.3. Phytochemical Constituents of the Studied Seaweeds
3.4. Mineral Composition
3.5. Amino Acids Analyzer of Studied Seaweeds
3.6. Fatty Acids Profile of Studied Seaweeds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Manzelat, F.S.; Mohammed, M.A.; Ahmed, H.B.; Ali, H.N.; Shuqaiq, A.; Huraidha, A.; Qahma, A.; Birk, A. Macro algae of the Red Sea from Jizan, Saudi Arabia. Phykos 2018, 48, 88–108. [Google Scholar] [CrossRef]
- McDermid, K.J.; Stuercke, B. Nutritional composition of edible Hawaiian seaweeds. J. Appl. Phycol. 2003, 15, 513–524. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010, 120, 749–757. [Google Scholar] [CrossRef]
- Valentina, J.; Poonguzhali, T.V.; Josmin Laali Nisha, L.L.; Sumathi, E. Estimation of protein, carbohydrate, and mineral content in selected seaweeds. Int. J. Curr. Res. 2015, 7, 11329–11333. [Google Scholar]
- Zubia, M.; Robledo, D.; Freile-Pelegrin, Y. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol. 2007, 19, 449–458. [Google Scholar] [CrossRef]
- Jaswir, I.; Mansur, H.A. Anti-inflammatory compounds of macro algae origin: A review. J. Med. Plant Res. 2011, 5, 7145–7156. [Google Scholar]
- Bonanno, G.; Orlando-Bonaca, M. Trace elements in Mediterranean seagrasses and macroalgae. Rew. Sci. Total Environ. 2018, 618, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
- Škrovánková, S. Seaweed vitamins as nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 357–369. [Google Scholar] [PubMed]
- Halliwell, B. Food-derived antioxidant evaluating their importance in food and in vivo. Food Sci. Agric. Chem. 1999, 1, 67–109. [Google Scholar]
- Gupta, S.; Abu-Ghannam, N. Recent development in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Tecnol. 2011, 12, 600–609. [Google Scholar] [CrossRef]
- Heo, S.J.; Park, E.J.; Lee, K.W.; Jeon, Y.J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef]
- Collins, K.G.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Looking beyond the terrestrial: The potential of seaweed derived bioactives to treat non-communicable diseases. Mar. Drugs 2016, 14, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, K.; Joseph, D.; Praveen, N.K. Antioxidant Activities and Phenolic Contents of Three Red Seaweeds (Division: Rhodophyta) Harvested from the Gulf of Mannar of Peninsular India. J. Food Sci. Technol. 2015, 52, 1924–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draisma, S.G.A.; Ballesteros, E.; Fousseau, F.; Thibaut, T. DNA Sequence Data Demonstrate the Polyphyly of the Genus Cystoseira and Other Sargassaceae Genera (Phaeophyceae). J. Phycol. 2010, 46, 1329–1345. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. National University of Ireland: Galaway, Ireland, 2011. Available online: http://www.algaebase.org (accessed on 1 November 2021).
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Reborsand, P.A.; Smith, F. Calorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Pak, N.; Araya, H. Valor nutritivo y aportes de fibra diete ’tica (soluble e insoluble) de microalgas comestibles de Chile, crudas y cocidas. Alimentos 1996, 21, 63–69. [Google Scholar]
- Karthick, P.; Siva Sankar, R.; Kaviarasan, T.; Mohanraju, R. Ecological implications of trace metals in seaweeds: Bio-indication potential for metal contamination in Wandoor, South Andaman Island. Egypt. J. Aquat. Res. 2012, 38, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Radwan, S.S. Coupling of two-dimensional thin-layer chromatography with gas chromatography for the quantitative analysis of lipid classes and their constituent fatty acids. J. Chromatogr. Sci. 1978, 16, 538–542. [Google Scholar] [CrossRef]
- Walker, S.K.; Hill, J.L.; Kleemann, D.O.; Nancarrow, C.D. Development of ovine emberyos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol. Reprod. 1996, 55, 703–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 6, 144–158. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Abushita, A.A.; Hebshi, E.A.; Daood, H.G.; Biacs, P.A. Determination of antioxidant vitamins in tomatoes. Food Chemis. 1997, 60, 207–212. [Google Scholar] [CrossRef]
- Tee, E.; Kuladevan, R.; Young, S.; Khor, S.; Zakiyah, H. Laboratory Procedures in Nutrient Analysis of Foods. Inst. Med Res. 1996, 82. [Google Scholar]
- Ismail, A.; Fun, C.S. Determination of vitamin C, β-carotene and riboflavin contents in five green vegetables organically and conventionally grown. Malays. J. Nutr. 2003, 9, 31–39. [Google Scholar]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Dyaizu, M. Studies on products of browning reaction- antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar]
- Kuda, T.; Kunii, T.; Goto, H.; Suzuki, T.; Yano, T. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem. 2007, 103, 900–905. [Google Scholar] [CrossRef]
- Kohen, R.; Nyska, A. Invited review: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef] [Green Version]
- Kurniawati, I.; Maftuch, M.; Hariati, A.M. Determination of the best solvent and extract duration on the technique of Gracilaria sp. maceration as well as its influence on moisture content and yield. Samakia J. Ilmu Perikan. 2016, 7, 72–77. [Google Scholar]
- Manam, V.K.; Subbaiah, M. Phytochemical, amino acid, fatty acid and vitamin investigation of marine seaweeds Colpomenia sinuosa and Halymenia porphyroides collected along Southeast Coast of Tamilnadu, India. World J. Pharm. Res. 2020, 9, 1088–1102. Available online: https://ssrn.com/abstract=3565775 (accessed on 1 November 2021). [CrossRef]
- Sarojini, Y.; Lakshminarayana, K.; Seshagiri Rao, P. Variations in Distribution of Flavonoids in Some Seaweed of Visakhapatnam Coast of India. Der Pharma Chem. 2012, 4, 1481–1484. [Google Scholar]
- Kokilam, G.; Vasuki, S. Biochemical and phytochemical analysis on Ulva fasciata and Caulerpa taxifolia. Int. J. Pharm. Pharm. Sci. Res. 2014, 4, 7–11. [Google Scholar]
- El-Shenody, R.A.; Ashour, M.; Ghobara, M.M. Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Braz. J. Food Technol. 2019, 22, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dewi, Y.S.K.; Karunia, C.J.K.; Fadly, D. Antioxidant and Antimicrobial Activities of Methanolic Extracts of Scorodocarpus borneensis. Becc. Syst. Rev. Pharm. 2020, 11, 246–252. [Google Scholar]
- Parthiban, C.; Saranya, C.; Girija, K.; Hemalatha, A.; Suresh, M.; Anantharaman, P. Biochemical composition of some selected seaweeds from Tuticorin coast. Adv. Appl. Sci. Res. 2013, 4, 362–366. [Google Scholar]
- El-Sheekh, M.M.; El-Shenddy, R.A.; Bases, E.A.; El Shafay, S.M. Comparative assessment of antioxidant activity and biochemical composition of four seaweeds, Rocky Bay of Abu Qir in Alexandria, Egypt. Food Sci. Technol. Campinas. 2020, 41, 29–40. [Google Scholar] [CrossRef]
- Ismail, G.A. Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Sci. Techno. 2017, 37, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Al-Dabbas, M.M. Antioxidant activity of different extracts from the aerial part of Moringa peregrina (Forssk.) Fiori, from Jordan. Pak. J. Pharm. Sci. 2017, 30, 2151–2157. [Google Scholar]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 10, 997–1027. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Roy, S.; Anantharaman, P. Biochemical Compositions of Seaweeds Collected from Olaikuda and Vadakkadu, Rameshwaram, Southeast Coast of India. J. Marine Sci. Res. Dev. 2017, 7, 240. [Google Scholar] [CrossRef] [Green Version]
- Kuda, T.; Ikemori, T. Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beachcasts in the Noto Peninsula, Ishikawa, Japan. Food Chem. 2009, 112, 575–581. [Google Scholar] [CrossRef]
- Ramu Ganesan, A.; Subramani, K.; Shanmugam, M.; Seedevi, P.; Park, S.; Alfarhan, A.H.; Rajagopal, R.; Balasubramanian, B. A comparison of nutritional value of underexploited edible seaweeds with recommended dietary allowances. J. King Saud. Univ. Sci. 2020, 32, 1206–1211. [Google Scholar] [CrossRef]
- FAO; WHO. Human Vitamin and Mineral Requirements. Report of a Joint FAO/WHO Expert Consultation Bangkok, Thailand; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001; pp. 235–247. [Google Scholar]
- Gressler, V.; Yokoya, N.S.; Fujii, M.T.; Colepicolo, P.; Filho, J.M.; Torres, R.P.; Pinto, E. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 2010, 120, 585–590. [Google Scholar] [CrossRef]
- Burtin, P. Nutritional value of seaweeds. Elec. J. Environ. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Gosch, B.J.; Magnusson, M.; Paul, N.A.; Nys, R.D. Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Glob. Change Biol. 2012, 4, 919–930. [Google Scholar] [CrossRef] [Green Version]
- WHO; FAO. Vitamin and Mineral Requirements in Human Nutrition; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Kasimala, M.; Mogos, G.G.; Negasi, K.T.; Bereket, G.A.; Abdu, M.M.; Melake, H.S. Biochemical composition of selected seaweeds from intertidal shallow waters of Southern Red Sea, Eritrea. Indian J. Mar. Sci. 2020, 49, 1153–1157. [Google Scholar]
- Venugopal, V. Marine Polysaccharides, Food Applications; CRC Press: New York, NY, USA, 2011; pp. 93–95. [Google Scholar]
- Nunraksa, N.; Rattanasansri, S.; Praiboon, J.; Chirapart, A. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds. J. Appl. Phycol. 2019, 31, 683–690. [Google Scholar] [CrossRef]
- Offei, F.; Mensah, M.; Kemausuor, F.; Thygesen, A.A. biorefinery approach to bioethanol and bioelectricity co-production from tropical seaweeds. J. Appl. Phycol. 2019, 31, 3899–3913. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef]
- Ruperez, P. Mineral content of edible marine Seaweeds. Food Chem. 2002, 79, 23–36. [Google Scholar] [CrossRef]
- Rasyid, A.; Ardiansyah, A.; Pangestuti, R. Nutrient Composition of Dried Seaweed Gracilaria gracilis. Indones. J. Mar. Sci. 2019, 24, 1–6. [Google Scholar] [CrossRef]
- Ivanovitch, K.; Klaewkla, J.; Chongsuwat, R.; Viwatwongkasem, C.; Kitvorapat, W. The intake of energy and selected nutrients by Thai urban sedentary workers: An evaluation of adherence to dietary recommendations. J. Nutrit. Metab. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouda, W.A.; Ibrahim, W.M.; Ellamie, A.M.; Ramadan, G. Biochemical and mineral compositions of six brown seaweeds collected from Red Sea at Hurghada Coast. Indian J. Geo-Mar. Sci. 2019, 48, 484–491. [Google Scholar]
- Insel, P.; Ross, D.; McMahon, K.; Bernstein, M. Nutrition, 3rd ed.; Jones and Bartlett Publishers: Burlington, MA, USA, 2007. [Google Scholar]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Summers, G.; Wong, R. Nutrient and heavy metal content of edible seaweeds in New Zealand. N. Z. J. Crop. Hort. 2010, 38, 19–28. [Google Scholar] [CrossRef]
- Moreiras, O.; Carbajal, Á.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos, 7th ed.; Moreiras, O., Carbajal, Á., Cabrera, L., Cuadrado, C., Eds.; Ediciones Pirámide: Madrid, Spain, 2003. [Google Scholar]
- Munda, I.M.; Hudnik, V. Trace metal content in some seaweeds from the northern Adriatic. Bot. Mar. 1991, 34, 241–249. [Google Scholar] [CrossRef]
- Kiss, S.A.; Forster, T.; Dongo, A. Absorption and effect of the magnesium content of a mineral water in the human body. J. Am. Coll. Nutr. 2004, 23, 758S–762S. [Google Scholar] [CrossRef]
- Oucif, H.; Benaissa, M.; Mehidi, S.A.; Prego, R.; Aubourg, S.P.; El-Amine Abi-Ayad, S.M. Chemical composition and nutritional value of different seaweeds from the West Algerian Coast. J. Aquat. Food Prod. Technol. 2020, 29, 90–104. [Google Scholar] [CrossRef]
- Galland-Irmouli, A.V.; Fleurence, J.; Lamghari, R.; Luçon, M.; Rouxel, C. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J. Nutrit. Biochem. 1999, 10, 353–359. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, a dietary fibre in edible seaweeds products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Cian, R.E.; Drago, S.R.; de Medina, F.S.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norziah, M.H.; Ching, C.Y. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem. 2000, 68, 69–76. [Google Scholar] [CrossRef]
- Wong, K.H.; Cheung, C.K. Nutritional Evaluation of Some Subtropical Red and Green Seaweeds Part I: Proximate Composition, Amino Acid Profiles and Some Physicochemical Properties. Food Chem. 2000, 71, 475–482. [Google Scholar] [CrossRef]
- Ratana-Arporn, P.; Chirapart, A. Nutritional Evaluation of Tropical Green Seaweeds Caulerpa Lentillifera and Ulva Reticulate. Kasetsart. J. Nat. Sci. 2006, 40, 75–83. [Google Scholar]
- Darcy-Vrillon, B. Nutritional aspects of the developing use of marine macroalgae for the human food industry. Int. J. Food Sci. Nutr. 1993, 44, 23–35. [Google Scholar]
- Sánchez -Machado, D.I.; Lopez-Cervantes, J.; Lopez-Hernandez, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- CAF, F.; Yilmaz, Ö.; Durucan, F.; Özdemir, N.Ş. Biochemical components of three marine macroalgae (Padina pavonica, Ulva lactuca and Taonia atomaria) from the Levantine sea coast of antalya, Turkey. J. Biol. Environ. Sci. 2015, 6, 401–411. [Google Scholar]
- Venkatesalu, V.; Sundaramoorthy, P.; Anantharaj, M.; Gopalakrishnan, M.; Chandrasekaran, M. Studies on the fatty acid composition of marine Algae of Rameswaram coast. Seaweed Res. Util. 2004, 26, 83–86. [Google Scholar]
- Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The red seaweed Gracilaria gracilis as a multi products source. Mar. Drugs 2013, 11, 3754–3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, M.M.; Ismail Abou-Dobara, M.; Abdou Mousa, M.; Refat, N.M. Variation of Fatty Acids and Antioxidants Contents of Vegetarian Rayeb Milk as Affected by Fortification with Natural and Artificial Sweeteners. Clin. Microbiol. Res. 2020, 3, 8–9. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Ascherio, A.; Hu, F.B.; Stampfer, M.J.; Willett, W.C.; Siscovick, D.S.; Rimm, E.B. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 2005, 111, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Minerals | Brown Seaweed | Red Seaweed | mg/Day | ||||
---|---|---|---|---|---|---|---|
T. ornata | P. indica | L. obtusa | S. scinaioides | G. gracilis * | DRI Male ** | DRI Female ** | |
Na | 255.41 ± 0.07 ab | 283.82 ± 0.06 b | 102.55 ± 0.03 a | 213.62 ± 0.02 ab | 290.89 | 475–1450 | 400–1200 |
Ca | 436.39 ± 0.1 ab | 390.42 ± 0.08 a | 845.38 ± 0.11 b | 632.71 ± 0.08 ab | 429.11 | 800 | 800 |
K | 1102.85 ± 0.11 ab | 1228.73 ± 0.05 b | 870.58 ± 0.13 ab | 578.38 ± 0.14 a | 1380.42 | 2450–4100 | 2050–3400 |
Mg | 266.4 ± 0.21 ab | 275.45 ± 0.12 b | 101.2 ± 0.13 a | 196.81 ± 0.11 ab | Nr | 310–320 | 250–260 |
Cd | 0.41 ± 0.05 ab | 0.5 ± 0.07 ab | 0.3 ± 0.05 a | 0.57 ± 0.01 b | Nr | Nr | Nr |
Pb | 0.03 ± 0.003 b | 0.02 ± 0.003 ab | 0.01 ± 0.005 a | 0.02 ± 0.01 ab | |||
Cu | 0.15 ± 0.006 ab | 0.08 ± 0.004 a | 0.17 ± 0.02 ab | 0.18 ± 0.0 b | Nr | 900/0.9 | 900/0.9 |
Mn | 0.67 ± 0.006 b | 0.62 ± 0.06 ab | 0.55 ± 0.012 ab | 0.52 ± 0.025 a | Nr | 2.3 | 1.8 |
Zn | 2.12 ± 0.025 a | 2.16 ± 0.015 ab | 4.9 ± 0.05 b | 3.52 ± 0.013 ab | Nr | 13 | 7 |
Na/K ratio | 0.232 ± 0.006 ab | 0.231 ± 0.001 ab | 0.118 ± 0.006 a | 0.369 ± 0.006 b | Nr | Nr | Nr |
Ion quotient ratio (in moles) [Ca + Na]/[Mg + K] | 0.359 ± 0.001 ab | 0.315 ± 0.002 a | 0.492 ± 0.006 ab | 0.743 ± 0002 b | Nr | Nr | Nr |
Amino Acids | P. indica | T. ornata | L. obtusa | S. scinaioides | Soya # | Egg # | ||||
---|---|---|---|---|---|---|---|---|---|---|
g/100 g Sample | g/100 g Amino Acid | g/100 g Sample | g/100 g Amino Acid | g/100 g Sample | g/100 g Amino Acid | g/100 g Sample | g/100 g Amino Acid | g/100 g Amino Acid | g/100 g Amino Acid | |
Essential amino acids | ||||||||||
Histidine | 0.38 | 2.67 | 0.32 | 2.42 | 0.23 | 1.93 | 0.2 | 1.87 | ND | ND |
Lysine | 0.65 | 4.57 | 0.62 | 4.69 | 0.54 | 4.53 | 0.46 | 4.31 | 6.1 | 7.0 |
Isoleucine | 0.51 | 3.59 | 0.47 | 3.56 | 0.41 | 3.44 | 0.37 | 3.47 | 5.1 | 5.4 |
Leucine | 0.45 | 3.17 | 0.41 | 3.10 | 0.36 | 3.02 | 0.3 | 2.81 | 7.6 | 8.6 |
Phenylalanine | 0.82 | 5.77 | 0.78 | 5.90 | 0.71 | 5.96 | 0.7 | 6.56 | 8.4 (+Tyr) | 9.3 (+Tyr) |
Methionine | 0.98 | 6.90 | 0.91 | 6.88 | 0.81 | 6.80 | 0.78 | 7.31 | ND | ND |
Valine | 0.68 | 4.79 | 0.5 | 3.78 | 0.46 | 3.86 | 0.36 | 3.37 | 5.2 | 6.6 |
Threonine | 0.79 | 5.56 | 0.74 | 5.60 | 0.63 | 5.29 | 0.57 | 5.34 | 4.1 | 4.7 |
∑ Essential Amino acids | 5.26 | 37.02 | 4.75 | 35.93 | 4.15 | 34.84 | 3.74 | 35.05 | 36.5 | 41.6 |
Non-essential amino acids | ||||||||||
Alanine | 0.87 | 6.12 | 0.87 | 6.58 | 0.82 | 6.88 | 0.75 | 7.03 | ||
Arginine | 0.77 | 5.42 | 0.72 | 5.45 | 0.68 | 5.71 | 0.64 | 6.00 | ||
Aspartic | 1.47 | 10.34 | 1.24 | 9.38 | 1.03 | 8.65 | 0.97 | 9.09 | ||
Cysteine | 0.85 | 5.98 | 0.86 | 6.51 | 0.82 | 6.88 | 0.75 | 7.03 | ||
Glutamic | 1.64 | 11.54 | 1.51 | 11.42 | 1.41 | 11.84 | 1.04 | 9.75 | ||
Glycine | 0.78 | 5.49 | 0.72 | 5.45 | 0.67 | 5.63 | 0.61 | 5.72 | ||
Proline | 0.98 | 6.90 | 1.02 | 7.72 | 0.86 | 7.22 | 0.83 | 7.78 | ||
Serine | 0.84 | 5.91 | 0.81 | 6.13 | 0.77 | 6.47 | 0.69 | 6.47 | ||
Tyrosine | 0.75 | 5.28 | 0.72 | 5.45 | 0.7 | 5.88 | 0.65 | 6.09 | ||
∑ Non-essential Amino acids | 8.95 | 62.98 | 8.47 | 64.07 | 7.76 | 65.16 | 6.93 | 64.95 | ||
∑ TAA | 14.21 | 13.22 | 11.91 | 10.67 |
Carbon No. | Fatty Acids | mg/g Sample | g/100 g Fatty Acids | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P. indica | T. ornata | L. obtusa | S. cinaioides | P. indica | T. ornata | L. obtusa | S. scinaioides | Porphyraa sp. | Palmariaa sp. | G. changii b | ||
Saturated fatty acids (SFA) | ||||||||||||
C8:0 | Caprylic acid | 0.94 | 3.01 | 2.41 | 1.02 | 1.38 | 4.86 | 2.600 | 1.19 | ND | ND | ND |
C10:0 | Capric acid | 3.25 | 2.84 | 1.02 | 0.86 | 4.77 | 4.59 | 1.10 | 1.0 | ND | ND | ND |
C12:0 | Lauric acid | 5.31 | 4.52 | 2.91 | 1.2 | 7.79 | 7.30 | 3.14 | 1.4 | ND | ND | ND |
C13:0 | Tetradecanoic acid | 2.11 | 1.54 | 5.21 | 3.65 | 3.09 | 2.49 | 5.63 | 4.26 | ND | ND | ND |
C14:0 | Myristic acid | 4.81 | 3.57 | 12.03 | 13.26 | 7.05 | 5.76 | 13.00 | 15.49 | ND | ND | ND |
C15:0 | Pentadecylic acid | 2.54 | 2.31 | 3.61 | 2.13 | 3.72 | 3.73 | 3.90 | 2.49 | |||
C16:0 | Palmitic acid | 18.03 | 15.68 | 26.05 | 30.72 | 26.44 | 25.32 | 28.14 | 35.63 | 63.19 | 45.44 | 22.0 |
C18:0 | Stearic acid | 3.94 | 2.74 | 6.51 | 4.12 | 5.78 | 4.42 | 7.03 | 4.78 | 1.23 | 1.28 | ND |
C20:0 | Arachidic acid | 3.27 | 1.81 | 9.87 | 4.02 | 4.80 | 2.92 | 10.66 | 4.66 | ND | ND | ND |
C22:0 | Behenic acid | 2.36 | 2.53 | ND | ND | 3.46 | 4.09 | ND | ND | |||
∑ SFAs | 46.56 | 40.55 | 69.62 | 60.98 | 68.28 | 65.48 | 75.2 | 70.9 | 64.42 | 46.72 | 22 | |
Monounsaturated fatty acids (MUFA) | ||||||||||||
C14:1 | Myristoleic acid | 2.95 | 3.71 | 3.25 | 3.41 | 4.33 | 5.99 | 3.51 | 3.98 | ND | ND | ND |
C15:1 | Cis-10-Pentadecenoic | 2.05 | 3.21 | 2.25 | 3.17 | 3.01 | 5.18 | 2.43 | 3.7 | |||
C16:1 | palmitoleic acid | 3.14 | 4.31 | 5.02 | 4.28 | 4.6 | 6.96 | 5.42 | 5.0 | 6.22 | 5.26 | ND |
C18:1 | Oleic acid | 6.57 | 5.25 | 3.98 | 4.67 | 9.63 | 8.48 | 4.3 | 4.45 | 6.7 | 3.13 | 21.9 |
C20: 1 ω9 | Cis-11-Eicosenoic | 1.87 | ND | 2.71 | 2.25 | 2.74 | 0.000 | 2.93 | 2.63 | 4.7 | 0.20 | ND |
C22: 1 ω9 | Erucic acid | ND | 0.56 | 1.050 | 3.05 | 0.000 | 0.9 | 1.13 | 3.56 | |||
∑ MUFA | 16.58 | 17.04 | 18.26 | 20.83 | 24.31 | 27.51 | 19.73 | 24.16 | 17.62 | 8.59 | 21.9 | |
Polyunsaturated fatty acids (PUFA) | ||||||||||||
C18:2ω6 | Linoleic acid | 1.09 | 1.02 | 0.98 | 1.08 | 1.6 | 1.65 | 1.06 | 1.25 | 1.17 | 0.69 | ND |
C18:3ω3 | α-Linolenic acid | 1.21 | 0.96 | 1.04 | 1.54 | 1.77 | 1.55 | 1.12 | 1.79 | 0.23 | 0.59 | ND |
C20:4 ω6 | Arachidanoic acid | 1.13 | 0.82 | 0.95 | 0 | 1.66 | 1.32 | 1.03 | 0 | 6.8 | 1.45 | ND |
C20:5 ω3 | Eicosapentaenoic acid | 1.08 | 1.54 | 1.04 | 0.91 | 1.58 | 2.49 | 1.12 | 1.06 | 6.03 | 24.05 | 33.1 |
C20:6 ω3 | Docosahexaenoic acid | 0.54 | ND | 0.67 | 0.87 | 0.79 | 00 | 0.72 | 1.01 | ND | ND | 12.9 |
∑ PUFA | 5.05 | 4.34 | 4.68 | 4.4 | 7.41 | 7.01 | 5.06 | 5.1 | 14.23 | 26.78 | 46.0 | |
∑ PUFA (ω6) | 2.22 | 1.84 | 1.93 | 1.08 | 3.26 | 2.95 | 2.08 | 1.25 | 7.97 | 2.14 | 0 | |
∑ PUFA (ω3) | 2.83 | 2.5 | 2.75 | 3.32 | 4.15 | 4.03 | 2.97 | 3.85 | 6.26 | 24.64 | 46 | |
Ratio ω6/ω3 | 0.78 | 0.74 | 0.70 | 0.33 | 1.27 | 0.09 | 0 | |||||
∑ TFA | 68.19 | 61.93 | 92.56 | 86.21 | 96.27 | 82.09 | 89.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farghl, A.A.M.; Al-Hasawi, Z.M.; El-Sheekh, M.M. Assessment of Antioxidant Capacity and Phytochemical Composition of Brown and Red Seaweeds Sampled off Red Sea Coast. Appl. Sci. 2021, 11, 11079. https://doi.org/10.3390/app112311079
Farghl AAM, Al-Hasawi ZM, El-Sheekh MM. Assessment of Antioxidant Capacity and Phytochemical Composition of Brown and Red Seaweeds Sampled off Red Sea Coast. Applied Sciences. 2021; 11(23):11079. https://doi.org/10.3390/app112311079
Chicago/Turabian StyleFarghl, Abla A. M., Zaki M. Al-Hasawi, and Mostafa M. El-Sheekh. 2021. "Assessment of Antioxidant Capacity and Phytochemical Composition of Brown and Red Seaweeds Sampled off Red Sea Coast" Applied Sciences 11, no. 23: 11079. https://doi.org/10.3390/app112311079
APA StyleFarghl, A. A. M., Al-Hasawi, Z. M., & El-Sheekh, M. M. (2021). Assessment of Antioxidant Capacity and Phytochemical Composition of Brown and Red Seaweeds Sampled off Red Sea Coast. Applied Sciences, 11(23), 11079. https://doi.org/10.3390/app112311079