Sharp Interface Capturing in Compressible Multi-Material Flows with a Diffuse Interface Method
Abstract
:1. Introduction
2. Physical Model and Governing Equations
- mass density ;
- specific internal energy ;
- temperature ;
- pressure .
3. Time and Space Discretization
3.1. Time Discretization
- Explicit convection/advection step: This step deals with the numerical calculation of all explicit terms in the system (11)–(16). This step is also called a convection/advection step (referred to as advection step hereafter) because these explicit terms can be determined by simply solving the advection problems for , , and , as shown below:where superscript c denotes the advected quantities.
- Implicit step: This step deals with the numerical solution of only implicit terms in the system (11)–(16) after calculating the explicit ones by solving the explicit advection step. To rewrite the system (11)–(16) in form of only implicit quantities, we perform the following substitution: (19) in (11); (17) in (12); (20) and (18) in (13). We consequently get the system of equations containing only implicit terms at time :
3.2. Space Discretization
4. Software Architecture for Numerical Resolution of the Model
5. Modification of the Advection Step: Sharp Interface Capturing (IC) Approach
5.1. Interface Capturing (IC) Strategy: Multidimensional Limiting Process with the Upper Bound Limiter (MLP–UB)
5.2. Reformulation of the Advection Step with the MLP-UB Method for the Sharp Interface Capturing
5.2.1. Reconstruction of Primitive Form of Scalars Instead of Their Conservative Form
- Reconstructing in their primitive form provides us the freedom to use different types of gradient limiters for and , . Here, we prefer to use a compressive flux limiter (MLP-UB in present case) for , and a less compressive one for and individually. For instance we have used MINMOD [45] type limiter for and .
5.2.2. Modification of MLP-UB Method to Include the Functionality of the Minmod Limiter: 1D Analysis
6. Numerical Experiments: Two-Material Test Cases
6.1. Two-Dimensional (2D) Air-Helium Shock-Bubble Interaction: Experimental Validation
6.2. Two-Dimensional (2D) Triple Point Case: Two Materials and Three Phases
- MUSCL+MLP-UB for , and MINMOD (MUSCL+MLP-UB with for .
- MINMOD for all .
7. Numerical Experiments: Three-Material Test Case
Two-Dimensional (2D) Sod-like Shock Tube: 3-Material Shock-Bubble Interaction
8. Conclusions and Scope for the Future Work
- Accurate and sharp capturing of the intricate interface evolution without numerical artifacts.
- Accurate interaction of the shocks with the multi-material interfaces.
- Bounded numerical results for any number of materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abarzhi, S.; Bhowmick, A.; Naveh, A.; Pandian, A.; Swisher, N.; Stellingwerf, R.; Arnett, D. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing. Proc. Natl. Acad. Sci. USA 2018, 116, 201714502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Touze, C.; Dorey, L.H.; Rutard, N.; Murrone, A. A compressible two-phase flow framework for Large Eddy Simulations of liquid-propellant rocket engines. Appl. Math. Model. 2020, 84, 265–286. [Google Scholar] [CrossRef]
- Nguyen, V.; Hoang, P.; Trong, N.; Park, W.G. Numerical modeling for compressible two-phase flows and application to near-field underwater explosions. Comput. Fluids 2021, 215, 104805. [Google Scholar] [CrossRef]
- Cao, L.; Fei, W.; Grosshans, H.; Cao, N. Simulation of Underwater Explosions Initiated by High-Pressure Gas Bubbles of Various Initial Shapes. Appl. Sci. 2017, 7, 880. [Google Scholar] [CrossRef] [Green Version]
- Cronenberg, A.W.; Benz, R. Vapor Explosion Phenomena with Respect to Nuclear Reactor Safety Assessment; Springer: Boston, MA, USA, 1980. [Google Scholar]
- Leskovar, M.; Končar, B. Simulation of Steam Explosion with a General Purpose CFD Code. In Proceedings of the 14th International Conference on Nuclear Engineering, Miami, FL, USA, 17–20 July 2006; Volume 2006. [Google Scholar] [CrossRef]
- Tezduyar, T.E. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 2006, 195, 2983–3000. [Google Scholar] [CrossRef]
- Jafari, A.; Ashgriz, N. Numerical Techniques for Free SurfaceFlows: Interface Capturing and InterfaceTracking. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer: Boston, MA, USA, 2008; pp. 1494–1513. [Google Scholar] [CrossRef]
- Noh, W.F.; Woodward, P. SLIC (Simple Line Interface Calculation). In Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, Twente University, Enschede, The Netherlands, June 28–July 2 1976; van de Vooren, A.I., Zandbergen, P.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 330–340. [Google Scholar]
- Ubbink, O.; Issa, R. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. J. Comput. Phys. 1999, 153, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef] [Green Version]
- Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I. A Hybrid Particle Level Set Method for Improved Interface Capturing. J. Comput. Phys. 2002, 183, 83–116. [Google Scholar] [CrossRef] [Green Version]
- She, D.; Kaufman, R.; Lim, H.; Melvin, J.; Hsu, A.; Glimm, J. Chapter 15—Front-Tracking Methods. In Handbook of Numerical Methods for Hyperbolic Problems; Handbook of Numerical Analysis; Abgrall, R., Shu, C.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 17, pp. 383–402. [Google Scholar] [CrossRef]
- Klingenberg, C.; Plohr, B. An Introduction to front Tracking. In Multidimensional Hyperbolic Problems and Computations; Glimm, J., Majda, A.J., Eds.; Springer: New York, NY, USA, 1991; pp. 203–216. [Google Scholar]
- Mirjalili, S.; Jain, S.; Dodd, M. Interface-capturing methods for two-phase flows: An overview and recent development. Cent Turbul. Res. Annu. Res. Briefs 2017, 117–135. Available online: https://doddm.com/publications/2017-ctr-sm-sj-md.pdf (accessed on 14 December 2021).
- Anderson, D.M.; McFadden, G.B.; Wheeler, A.A. Diffuse-Interface Methods in Fluid Mechanics. Annu. Rev. Fluid Mech. 1998, 30, 139–165. [Google Scholar] [CrossRef] [Green Version]
- De Vuyst, F.; Fochesato, C.; Mahy, V.; Motte, R.; Peybernes, M. A geometrically accurate low-diffusive conservative interface capturing method suitable for multimaterial flows. Comput. Fluids 2021, 227, 104897. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the Ultimate Conservative Difference Scheme. A Second-order Sequel to Godunov’s Method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, C. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part II: Multi-dimensional limiting process. J. Comput. Phys. 2005, 208, 570–615. [Google Scholar] [CrossRef]
- Després, B.; Lagoutière, F. Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 2001, 16, 479–524. [Google Scholar] [CrossRef]
- Xiao, F.; Ii, S.; Chen, C. Revisit to the THINC scheme: A simple algebraic VOF algorithm. J. Comput. Phys. 2011, 230, 7086–7092. [Google Scholar] [CrossRef] [Green Version]
- So, K.; Hu, X.; Adams, N. Anti-diffusion interface sharpening technique for two-phase compressible flow simulations. J. Comput. Phys. 2012, 231, 4304–4323. [Google Scholar] [CrossRef]
- Vazquez-Gonzalez, T.; Llor, A.; Fochesato, C. Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option? Int. J. Multiph. Flow 2016, 81, 104–112. [Google Scholar] [CrossRef]
- Dinh, T.N.; Nourgaliev, R.R.; Theofanous, T.G. Understanding the ill-posed two-fluid model. In Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea, 5–11 October 2003; pp. 5–9. [Google Scholar]
- Drew, D.A.; Passman, S.L. Theory of Multicomponent Fluids; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Saurel, R.; Lemetayer, O. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 2001, 431, 239–271. [Google Scholar] [CrossRef]
- Paillère, H.; Corre, C.; Garca Cascales, J. On the extension of the AUSM+ scheme to compressible two-fluid models. Comput. Fluids 2003, 32, 891–916. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Harlow, F.H.; Amsden, A.A. A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 1971, 8, 197–213. [Google Scholar] [CrossRef]
- Harlow, F.H.; Amsden, A.A. Numerical calculation of almost incompressible flow. J. Comput. Phys. 1968, 3, 80–93. [Google Scholar] [CrossRef]
- Bruce Stewart, H.; Wendroff, B. Two-phase flow: Models and methods. J. Comput. Phys. 1984, 56, 363–409. [Google Scholar] [CrossRef]
- Versteeg, H.K. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Longman Scientific & Technical: New York, NY, USA; Wiley: Harlow, Essex, UK, 1995. [Google Scholar]
- Blazek, J. Chapter 11—Principles of Grid Generation. In Computational Fluid Dynamics: Principles and Applications, 3rd ed.; Blazek, J., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 357–393. [Google Scholar] [CrossRef]
- Gay, G. Modélisation de l’Interaction Combustible-réFrigérant: Fragmentation et Explosion de Vapeur. PhD Thesis, Aix-Marseille University, Marseille, France, 2020. [Google Scholar]
- Petsc Newton. Available online: https://petsc4py.readthedocs.io/en/stable/manual/snes/#equation-fx0 (accessed on 14 December 2021).
- Sander, O. DUNE—The Distributed and Unified Numerics Environment; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- TinyXml. Available online: http://www.grinninglizard.com/tinyxml/ (accessed on 14 December 2021).
- PETSc Documentation. Available online: https://petsc.org/ (accessed on 14 December 2021).
- Petsc SNES. Available online: https://petsc.org/release/docs/manualpages/SNES/SNESNEWTONLS.html (accessed on 14 December 2021).
- PETSc Linear Solver. Available online: https://petsc.org/release/docs/manualpages/KSP/KSPPREONLY.html (accessed on 14 December 2021).
- Roe, R. Some contributions to the modelling of discontinuous flows. Lect. Appl. Math. 1985, 22, 163–193. [Google Scholar]
- Saurel, R.; Abgrall, R. A Simple Method for Compressible Multifluid Flows. Siam J. Sci. Comput. 1999, 21, 1115–1145. [Google Scholar] [CrossRef]
- Karni, S. Multicomponent Flow Calculations by a Consistent Primitive Algorithm. J. Comput. Phys. 1994, 112, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Roe, P.L. Characteristic-Based Schemes for the Euler Equations. Annu. Rev. Fluid Mech. 1986, 18, 337–365. [Google Scholar] [CrossRef]
- Burden, A.; Burden, R.; Faires, J. Numerical Analysis, 10th ed.; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar] [CrossRef]
- Haas, J.-F.; Sturtevant, B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 1987, 181, 41–76. [Google Scholar] [CrossRef] [Green Version]
- Sod, G.A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 1978, 27, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Richtmyer, R.D. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 1960, 13, 297–319. [Google Scholar] [CrossRef]
- Meshkov, E.E. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 1969, 4, 101–104. [Google Scholar] [CrossRef]
r | ||||
---|---|---|---|---|
(m) | ||||
u | v | p | ||||
---|---|---|---|---|---|---|
0 | 720 | |||||
0 | 0 | 720 | ||||
0 | 0 | 2440 |
u | v | p | |||||
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 100 | ||||
0 | 0 | 0 | 100 | ||||
0 | 0 | 0 | 100 | ||||
0 | 0 | 100 | 1000 |
(m) | ||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandan, S.; Fochesato, C.; Peybernes, M.; Motte, R.; De Vuyst, F. Sharp Interface Capturing in Compressible Multi-Material Flows with a Diffuse Interface Method. Appl. Sci. 2021, 11, 12107. https://doi.org/10.3390/app112412107
Nandan S, Fochesato C, Peybernes M, Motte R, De Vuyst F. Sharp Interface Capturing in Compressible Multi-Material Flows with a Diffuse Interface Method. Applied Sciences. 2021; 11(24):12107. https://doi.org/10.3390/app112412107
Chicago/Turabian StyleNandan, Shambhavi, Christophe Fochesato, Mathieu Peybernes, Renaud Motte, and Florian De Vuyst. 2021. "Sharp Interface Capturing in Compressible Multi-Material Flows with a Diffuse Interface Method" Applied Sciences 11, no. 24: 12107. https://doi.org/10.3390/app112412107
APA StyleNandan, S., Fochesato, C., Peybernes, M., Motte, R., & De Vuyst, F. (2021). Sharp Interface Capturing in Compressible Multi-Material Flows with a Diffuse Interface Method. Applied Sciences, 11(24), 12107. https://doi.org/10.3390/app112412107