Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers
Abstract
:Featured Application
Abstract
1. Introduction
2. Light-Induced Response of Azobenzene Chromophores
3. Bio-Inspired Application Prospects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayer, S.; Zentel, R. Liquid crystalline polymers and elastomers. Curr. Opin. Solid State Mater. Sci. 2002, 6, 545–551. [Google Scholar] [CrossRef]
- Ula, S.W.; Traugutt, N.A.; Volpe, R.H.; Patel, R.R.; Yu, K.; Yakachi, C.M. Liquid crystal elastomers: An introduction and review of emerging technologies. Liq. Cryst. Rev. 2018, 6, 78–107. [Google Scholar] [CrossRef]
- Zentel, R. Liquid Crystal Elastomers. Adv. Mater. 1989, 10, 321–329. [Google Scholar] [CrossRef]
- Küpfer, J.; Finkelmann, H. Liquid crystal elastomers: Influence of the orientational distribution of the crosslinks on the phase behaviour and reorientation processes. Macromol. Chem. Phys. 1994, 195, 1353–1367. [Google Scholar] [CrossRef]
- Küpfer, J.; Finkelmann, H. Nematic liquid single crystal elastomers. Die Makromol. Chemie Rapid Commun. 1991, 12, 717–726. [Google Scholar] [CrossRef]
- Bengs, H.; Finkelmann, H.; Küpfer, J.; Ringsdorf, H.; Schuhmacher, P. Highly oriented discotic elastomers. Die Makromol. Chemie Rapid Commun. 1993, 14, 445–450. [Google Scholar] [CrossRef]
- Kundler, I.; Finkelmann, H. Strain-induced director reorientation in nematic liquid single crystal elastomers. Macromol. Rapid Commun. 1995, 16, 679–686. [Google Scholar] [CrossRef]
- Finkelmann, H. Liquid single crystal elastomers (LSCE)—Mechanical optical and electric properties. Macromol. Symp. 1995, 98, 327. [Google Scholar] [CrossRef]
- Brostow, W.; Walasek, J. Statistical thermodynamics of polymer liquid crystals: Competition between energetic and entropic effects. J. Chem. Phys. 1996, 105, 4367. [Google Scholar] [CrossRef]
- Zubarev, E.R.; Kuptsov, S.A.; Yuranova, T.I.; Talroze, R.V.; Finkelmann, H. Monodomain liquid crystalline networks: Reorientation mechanism from uniform to stripe domains. Liq. Cryst. 1996, 26, 1531–1540. [Google Scholar] [CrossRef]
- Brand, H.R.; Kawasaki, K. On the macroscopic consequences of frozen order in liquid single crystal elastomers. Macromol. Rapid Commun. 1994, 15, 251–257. [Google Scholar] [CrossRef]
- Menzel, A.M.; Brand, H.R. Instabilities in nematic elastomers in external electric and magnetic fields. Eur. Phys. J. E. 2008, 26, 235–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, H.R.; Pleiner, H.; Martinoty, P. Selected macroscopic properties of liquid crystalline elastomers. Soft Mater. 2006, 2, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Krause, S.; Zander, F.; Bergmann, G.; Brandt, H.; Wertmer, H.; Finkelmann, H. Nematic main-chain elastomers: Coupling and orientational behavior. Comptes Rendus Chimie 2009, 12, 85–104. [Google Scholar] [CrossRef]
- Rousseau, I.A.; Mather, P.T. Shape Memory Effect Exhibited by Smectic-C Liquid Crystalline Elastomers. J. Am. Chem. Soc. 2003, 125, 15300–15301. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F. An introduction to the physics of liquid crystals. In Fluids, Colloids and Soft Materials: An. Introduction to Soft Matter Physics; Fernandez-Nieves, A., Puertas, A.M., Eds.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2016; pp. 307–340. [Google Scholar] [CrossRef]
- Castles, F.; Morris, S.; Hung, J.; Qasim, M.M.; Wright, A.D.; Nosheen, S.; Choi, S.S.; Outram, B.I.; Elston, S.J.; Burgess, C.; et al. Stretchable liquid-crystal blue-phase gels. Nat. Mater. 2014, 13, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Algorri, J.F.; Zografopoulos, D.C.; Urruchi, V.; Sánchez-Pena, J.M. Recent Advances in Adaptive Liquid Crystal Lenses. Crystals 2019, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- Ghilardi, M.; Boys, H.; Török, P.; Busfield, J.J.C.; Carpi, F. Smart Lenses with Electrically Tuneable Astigmatism. Sci. Rep. 2019, 9, 16127. [Google Scholar] [CrossRef] [Green Version]
- Kent, T.A.; Ford, M.J.; Markvicka, E.J.; Majidi, C. Soft actuators using liquid crystal elastomers with encapsulated liquid metal joule heaters. Multifunct. Mater. 2020, 3, 025003. [Google Scholar] [CrossRef]
- Prévôt, M.E.; Ustunel, S.; Hegmann, E. Liquid Crystal Elastomers—A Path to Biocompatible and Biodegradable 3D-LCE Scaffolds for Tissue Regeneration. Materials 2018, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Cladis, P.E. Phase Transitions in Liquid Crystalline Elastomers: A Fundamental Aspect of LCEs as Artificial Muscles. In Interactive Dynamics of Convection and Solidification; Ehrhard, P., Riley, D.S., Steen, P.H., Eds.; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar] [CrossRef]
- Blair, H.S.; McArdle, C.B. Photoresponsive polymers: 2. The monolayer behaviour of photochromic polymers containing aromatic azobenzene residues. Polymer 1984, 25, 1347–1352. [Google Scholar] [CrossRef]
- Higuchi, M.; Minoura, N.; Kinoshita, T. Photo-responsive behavior of a monolayer composed of an azobenzene containing polypeptide in the main chain. Colloid Polym. Sci. 1995, 273, 1022–1027. [Google Scholar] [CrossRef]
- Menzel, H.; Weichart, B.; Hallensleben, M.L. Langmuir-Blodgett-films of photochromic polyglutamates. Polym. Bull. 1992, 27, 637–644. [Google Scholar] [CrossRef]
- Seki, T. Dynamic Photoresponsive Functions in Organized Layer Systems Comprised of Azobenzene-containing Polymers. Polym. J. 2004, 36, 435–454. [Google Scholar] [CrossRef] [Green Version]
- Tschierske, C. Mirror symmetry breaking in liquids and liquid crystals. Liq. Cryst. 2018, 45, 2221–2252. [Google Scholar] [CrossRef]
- Krasna, M.; Cvetko, M.; Ambrožič, M. Symmetry breaking and structure of a mixture of nematic liquid crystals and anisotropic nanoparticles. Beilstein J. Org. Chem. 2010, 6, 74. [Google Scholar] [CrossRef]
- Lamy, X. Uniaxial symmetry in nematic liquid crystals. Annales l’Institut Henri Poincare (C) Non Linear Anal. 2015, 32, 1125–1144. [Google Scholar] [CrossRef]
- Emsley, J.W.; Lelli, M.; Joy, H.; Tamba, M.-G.; Mehl, G.H. Similarities and differences between molecular order in the nematic and twist-bend nematic phases of a symmetric liquid crystal dimer. Phys. Chem. Chem. Phys. 2016, 18, 9419–9430. [Google Scholar] [CrossRef]
- Salamończyk, M.; Vaupotič, N.; Pociecha, D.; Walker, R.; Storey, J.M.D.; Imrie, C.T.; Wang, C.; Zhu, C.; Gorecka, E. Multi-level chirality in liquid crystals formed by achiral molecules. Nat. Commun. 2019, 10, 1922. [Google Scholar] [CrossRef]
- Shen, T.-Z.; Hong, S.-H.; Lee, J.-H.; Kang, S.-G.; Lee, B.; Whang, D.; Song, J.-K. Molecular Ordering: Selectivity of Threefold Symmetry in Epitaxial Alignment of Liquid Crystal Molecules on Macroscale Single-Crystal Graphene. Adv. Mater. 2018, 30, 1802441. [Google Scholar] [CrossRef]
- Gallardo, H.; Cristiano, R.; Vieira, A.A.; Filho, R.A.W.N.; Srivastava, R.M.; Bechtold, I.H. Non-symmetrical luminescent 1,2,4-oxadiazole-based liquid crystals. Liq. Cryst. 2008, 35, 857–863. [Google Scholar] [CrossRef]
- Han, J. 1,3,4-Oxadiazole based liquid crystals. J. Mater. Chem. C 2013, 1, 7779–7797. [Google Scholar] [CrossRef]
- Alaasar, M. Azobenzene-containing bent-core liquid crystals: An overview. Liq. Cryst. 2016, 43, 2208–2243. [Google Scholar] [CrossRef]
- Takezoe, H.; Eremin, A. Bent-Shaped Liquid Crystals: Structure and Physical Properties; CRC Press: Boca Raton, FL, USA, 2015; pp. 3–62. [Google Scholar]
- Gimeno, N.; Pintre, I.; Martinez-Abadia, M.; Serrano, J.L.; Ros, M.B. Bent-core liquid crystal phases promoted by azo-containing molecules: From monomers to side-chain polymers. RSC Adv. 2014, 4, 19694–19702. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Z.; Yan, D.; Zhang, Z.; Guan, J.; Qiao, J. Synthesis of 4-Chloro-1,3-Diazobenzene Bent-Cores Liquid Crystals and Characterizations of Their Mesogenic Behaviors and Photoisomerization Phenomena. ChemRxiv 2020. preprint. [Google Scholar] [CrossRef] [Green Version]
- Begum, N.; Kaur, S.; Xiang, Y.; Yin, H.; Mohiuddin, G.; Rao, N.V.S.; Pai, S.K. Photoswitchable Bent-Core Nematic Liquid Crystals with Methylated Azobenzene Wing Exhibiting Optic-Field-Enhanced Fréedericksz Transition Effect. J. Phys. Chem. C 2020, 124, 874–885. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Jeong, K.-U. Light responsive liquid crystal soft matters: Structures, properties, and applications. Liq. Cryst. Today 2019, 28, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, W.; He, W.; Yang, Z.; Wang, D.; Cao, H. Liquid crystalline blue phase materials with three-dimensional nanostructures. J. Mater. Chem. C 2019, 7, 13352–13366. [Google Scholar] [CrossRef]
- Hada, M.; Yamaguchi, D.; Ishikawa, T.; Sawa, T.; Tsuruta, K.; Ishikawa, K.; Koshihara, S.-y.; Hayashi, Y.; Kato, T. Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules. Nat. Commun. 2019, 10, 4159. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Zhao, H.; Chen, S. New azobenzene liquid crystal with dihydropyrazole heterocycle and photoisomerization studies. R. Soc. Open Sci. 2020, 7, 200474. [Google Scholar] [CrossRef]
- Ube, T. Development of novel network structures in crosslinked liquid-crystalline polymers. Polym. J. 2019, 51, 983–988. [Google Scholar] [CrossRef]
- Kondo, M. Photomechanical materials driven by photoisomerization or photodimerization. Polym. J. 2020, 52, 1027–1034, Early Access. [Google Scholar] [CrossRef]
- Bi, M.; He, Y.; Wang, Y.; Yang, W.; Qin, B.; Xu, J.; Wang, X.; Wang, B.; Dong, Y.; Gao, Y.; et al. Photo Actuation Performance of Nanotube Sheet Incorporated Azobenzene Crosslinked Liquid Crystalline Polymer Nanocomposite. Polymers 2019, 11, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Y.; Norikane, Y.; Azumi, R.; Koyama, E. Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nat. Commun. 2019, 9, 3234. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wen, R.; Zhang, Y.; Zhu, L.; Zhang, B.; Zhang, H. Photoresponsive side-chain liquid crystalline polymers with an easily cross-linkable azobenzene mesogen. J. Mater. Chem. 2009, 19, 236–245. [Google Scholar] [CrossRef]
- Ube, T.; Ikeda, T. Photomobile Polymer Materials with Complex 3D Deformation, Continuous Motions, Self-Regulation, and Enhanced Processability. Adv. Opt. Mater. 2019, 7, 1900380. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, M.; Li, F.; Yu, Y. Red-light Controllable Liquid-Crystal Soft Actuators via Lowpower Excited Upconversion Based on Triplet-Triplet Annihilation. J. Am. Chem. Soc. 2013, 135, 16446–16453. [Google Scholar] [CrossRef]
- Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic Bending and Unbending Behavior of Azobenzene Liquid-Crystalline Gels by Light Exposure. Adv. Mater. 2003, 15, 201–205. [Google Scholar] [CrossRef]
- Yun, J.-H.; Li, C.; Kim, S.; Cho, M. Comparing Photo-Actuation of Azobenzene-Doped Nematic Liquid-Crystal Polymer Through Its Activation Mechanism: Trans-cis-trans Reorientation and Photoisomerization. J. Phys. Chem. C 2018, 122, 6310–6317. [Google Scholar] [CrossRef]
- Garcia-Amorós, J.; Finkelmann, H.; Velasco, D. Influence of the photo-active azo cross-linker spacer on the opto-mechanics of polysiloxane elastomer actuators. J. Mater. Chem. 2011, 21, 1094–1101. [Google Scholar] [CrossRef]
- Garcia-Amorós, J.; Martínez, M.; Finkelmann, H.; Velasco, D. Photoactuation and thermal isomerisation mechanism of cyanoazobenzene-based liquid crystal elastomers. Phys. Chem. Chem. Phys. 2014, 16, 8448–8454. [Google Scholar] [CrossRef] [PubMed]
- Seankennedy. The Science Creative Quarterly (SCQ). Biomimicry/Bimimetics: General Principles and Practical Examples. Available online: https://www.scq.ubc.ca/biomimicrybimimetics-general-principles-and-practical-examples/ (accessed on 6 July 2020).
- Olsen, Z.J. The Design, Modeling, and Optimization of a Biomimetic Soft Robot for Fluid Pumping and Thrust Generation Using Electroactive Polymer Actuators. Master’s Thesis, University of Nevada, Las Vegas, NV, USA, 2018. Available online: https://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=4304&context=thesesdissertations (accessed on 6 July 2020).
- Marchese, A.D.; Katzschmann, R.K.; Rus, D. A Recipe for Soft Fluidic Elastomer Robots. Soft Robot. 2015, 2, 7–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Li, C.; Huang, X. Actuators based on liquid crystalline elastomer materials. Nanoscale 2013, 5, 5225–5240. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Yang, K.; Raquez, J.-M. A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials. Molecules 2020, 25, 1241. [Google Scholar] [CrossRef] [Green Version]
- Ohm, C.; Brehmer, M.; Zentel, R. Liquid Crystalline Elastomers as Actuators and Sensors. Adv. Mater. 2010, 22, 3366–3387. [Google Scholar] [CrossRef]
- Barrett, C.J.; Mamiya, J.-i.; Yager, K.G.; Ikeda, T. Photo-mechanical effects in azobenzene containing soft materials. Soft Matter 2007, 3, 1249–1261. [Google Scholar] [CrossRef]
- Yu, Y.L.; Nakano, M.; Ikeda, T. Directed bending of a polymer film by light—Miniaturizing a simple photomechanical system could expand its range of applications. Nature 2003, 425, 145. [Google Scholar] [CrossRef]
- Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G.K.; Berger, R.; Butt, H.-J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017, 9, 145–151. [Google Scholar] [CrossRef]
- Akiyama, H.; Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 2012, 24, 2353–2356. [Google Scholar] [CrossRef]
- Norikane, Y.; Uchida, E.; Tanaka, S.; Fujiwara, K.; Koyama, A.R.; Akiyama, H.; Kihara, H.; Yoshida, M. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid−liquid patterning. Org. Lett. 2014, 16, 5012–5015. [Google Scholar] [CrossRef]
- Finkelmann, H.; Rehage, G. Investigations on liquid crystalline polysiloxanes, 2. Optical properties of cholesteric phases and influence of the flexible spacer on the mobility of the mesogenic groups. Die Makromol. Chem. Rapid Commun. 1980, 1, 31. [Google Scholar] [CrossRef]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Q.; Bastiaansen, C.W.M.; den Toonder, J.M.J.; Broer, D.J. Photo-Switchable Surface Topologies in Chiral Nematic Coatings. Angew. Chem. Int. Ed. 2012, 51, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kondo, M.; Mamiya, J.-I.; Yu, Y.; Kinoshita, M.; Barrett, C.J.; Ikeda, T. Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47, 4986–4988. [Google Scholar] [CrossRef]
- Pang, X.; Lv, J.-a.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. Adv. Mater. 2019, 31, 1904224. [Google Scholar] [CrossRef]
- Yu, Y.L.; Nakano, M.; Ikeda, T. Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers. Pure Appl. Chem. 2004, 76, 1467. [Google Scholar] [CrossRef]
- Braun, L.B.; Linder, T.G.; Hessberger, T.; Zentel, R. Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers 2016, 8, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, M.K.; Watanabe, K.; Izumi, K. Biomimetics Robots from Bio-inspiration to Implementation. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 143–148. [Google Scholar] [CrossRef]
- Mazzolai, B.; Beccai, L.; Mattoli, V. Plants as model in biomimetics and biorobotics: New perspectives. Front. Bioeng. Biotechnol. 2014, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Snell-Rood, E. Interdisciplinarity: Bring biologists into biomimetics. Nature 2016, 529, 277–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.-J.; Wood, R. Biomimertic Robots (Chapter 23). In Springer Handbook of Robotics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 543–551. [Google Scholar]
- Albu-Schäffer, A.; Bicchi, A. Actuators for Soft Robots (Chapter 21). In Springer Handbook of Robotics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 499–501. [Google Scholar]
- Iamsaard, S.; Aßhoff, S.J.; Matt, B.; Kudernac, T.; Cornelissen, J.J.L.M.; Fletcher, S.P.; Katsonis, N. Conversion of light into macroscopic helical motion. Nat. Chem. 2014, 6, 229–235. [Google Scholar] [CrossRef]
- Lee, K.M.; Smith, M.L.; Koerner, H.; Tabiryan, N.; Vala, R.A.; Bunning, T.J.; White, T.J. Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks. Adv. Funct. Mater. 2011, 21, 2913–2918. [Google Scholar] [CrossRef]
- Wang, M.; Lin, B.-P.; Yang, H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nat. Commun. 2016, 7, 13981. [Google Scholar] [CrossRef] [Green Version]
- Shahsavan, H.; Aghakhani, A.; Zeng, H.; Guo, Y.; Davidson, Z.S.; Priimagi, A.; Sitti, M. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc. Natl. Acad. Sci. USA 2020, 117, 5125–5133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Zhang, L.; Weis, P.; Naumov, P.; Wu, S. A solar actuator based on hydrogen-bonded azopolymers for electricity generation. J. Mater. Chem. A 2018, 6, 3361. [Google Scholar] [CrossRef] [Green Version]
- Briggs, W. How do sunflowers follow the Sun—And to what end? Science 2016, 353, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Bushuyev, O.S.; Tomberg, A.; Friščić, T.; Barrett, C.J. Shaping crystals with light: Crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. J. Am. Chem. Soc. 2013, 135, 12556–12559. [Google Scholar] [CrossRef]
- Bléger, D.; Schwarz, J.; Brouwer, A.M.; Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc. 2012, 134, 20597–20600. [Google Scholar] [CrossRef]
- Knie, C.; Utecht, M.; Zhao, F.; Kulla, H.; Kavalenko, S.; Brouwer, A.M.; Saalfrank, P.; Hecht, S.; Bléger, D. Ortho-fluoroazobenzenes: Visible light switches with very long-lived z isomers. Chem. Eur. J. 2014, 20, 16492–16501. [Google Scholar] [CrossRef]
- Kumar, K.; Knie, C.; Bléger, D.; Peletier, M.A.; Friedrich, H.; Hecht, S.; Broer, D.J.; Debile, M.G.; Schenning, A.P.H.J. A chaotic self-oscillating sunlight-driven polymer actuator. Nat. Commun. 2016, 7, 11975. [Google Scholar] [CrossRef] [Green Version]
- Mauro, M. Gel-based soft actuators driven by light. J. Mater. Chem. B 2019, 7, 4234–4242. [Google Scholar] [CrossRef]
- Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angew. Chem. Int. Ed. 2010, 49, 7461. [Google Scholar] [CrossRef]
- Takashima, Y.; Nakayama, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.; Harada, A. Complex Formation and Gelation between Copolymers Containing Pendant Azobenzene Groups and Cyclodextrin Polymers. Chem. Lett. 2004, 33, 890. [Google Scholar] [CrossRef]
- Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat. Commun. 2012, 3, 1270. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Yang, W.; Xu, J.; Wang, X.; Li, X.; Li, C.; Gao, Y.; Wang, Q.-e. Photo-Actuation of Liquid Crystalline Elastomer Materials Doped with Visible Absorber Dyes under Quasi-Daylight. Polymers 2020, 12, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wie, J.J.; Shankar, M.R.; White, T.J. Photomotility of polymers. Nat. Commun. 2016, 7, 13260. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimoga, G.; Choi, D.-S.; Kim, S.-Y. Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers. Appl. Sci. 2021, 11, 1233. https://doi.org/10.3390/app11031233
Shimoga G, Choi D-S, Kim S-Y. Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers. Applied Sciences. 2021; 11(3):1233. https://doi.org/10.3390/app11031233
Chicago/Turabian StyleShimoga, Ganesh, Dong-Soo Choi, and Sang-Youn Kim. 2021. "Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers" Applied Sciences 11, no. 3: 1233. https://doi.org/10.3390/app11031233
APA StyleShimoga, G., Choi, D.-S., & Kim, S.-Y. (2021). Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers. Applied Sciences, 11(3), 1233. https://doi.org/10.3390/app11031233