Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghafari, J.G. Centennial inventory: The changing face of orthodontics. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 732–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelis, M.A.; Scheffler, N.R.; De Clerck, H.J.; Tulloch, J.F.C.; Behets, C.N. Systematic review of the experimental use of temporary skeletal anchorage devices in orthodontics. Am. J. Orthod. Dentofac. Orthop. 2007, 131 (Suppl. S4), 52–58. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.; Vasudavan, S.; Wilmes, B. CAD/CAM Metallic Printing of a Skeletally Anchored Upper Molar Distalizer. J. Clin. Orthod. 2020, 54, 140–150. [Google Scholar] [PubMed]
- Maino, B.G.; Paoletto, E.; Lombardo, L.; Siciliani, G. A Three-Dimensional Digital Insertion Guide for Palatal Miniscrew Placement. J. Clin. Orthod. 2016, 50, 12–22. [Google Scholar] [PubMed]
- De Gabriele, O.; Dallatana, G.; Riva, R.; Vasuvdavan, S.; Wilmes, B. The Easy Driver for Placement of palatal mini-implants and a maxillary expander in a single appointment. J. Clin. Orthod. 2017, 51, 728–737. [Google Scholar] [PubMed]
- Graf, S.; Hansa, I. Clinical guidelines to integrate temporary anchorage devices for bone-borne orthodontic appliances in the digital workflow. APOS Trends Orthod. 2019, 9, 182–189. [Google Scholar] [CrossRef]
- Graf, S. Direct Printed Metal Devices—The Next Level of Computer-aided Design and Computer-aided Manufacturing Applications in the Orthodontic Care. APOS Trends Orthod. 2017, 7, 253–259. [Google Scholar] [CrossRef]
- Chochlidakis, K.M.; Papaspyridakos, P.; Geminiani, A.; Chen, C.J.; Feng, I.J.; Ercoli, C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 184–190.e12. [Google Scholar] [CrossRef]
- Vaid, N.R. Up in the Air: Orthodontic technology unplugged! APOS Trends Orthod. 2017, 7, 1–5. [Google Scholar] [CrossRef]
- Di Fiore, A.; Meneghello, R.; Graiff, L.; Savio, G.; Vigolo, P.; Monaco, C.; Stellini, E. Full arch digital scanning systems performances for implant-supported fixed dental prostheses: A comparative study of 8 intraoral scanners. J. Prosthodont. Res. 2019, 63, 396–403. [Google Scholar] [CrossRef]
- Lee, R.J.; Moon, W.; Hong, C. Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 887–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carano, A.; Testa, M. The distal jet for upper molar distalization. J. Clin. Orthod. 1996, 30, 374–380. [Google Scholar] [PubMed]
- Wilmes, B.; Drescher, D. A miniscrew system with interchangeable abutments. J. Clin. Orthod. 2008, 42, 574–580. [Google Scholar] [PubMed]
- Claus, D.; Radeke, J.; Zint, M.; Vogel, A.B.; Satravaha, Y.; Kilic, F.; Hibst, R.; Lapatki, B.G. Generation of 3D digital models of the dental arches using optical scanning techniques. Semin Orthod. 2018, 24, 416–429. [Google Scholar] [CrossRef]
- Tarraf, N.E.; Ali, D.M. Present and the future of digital orthodontics. Semin Orthod. 2018, 24, 376–385. [Google Scholar] [CrossRef]
- Graf, S.; Cornelis, M.A.; Hauber Gameiro, G.; Cattaneo, P.M. Computer-aided design and manufacture of hyrax devices: Can we really go digital? Am. J. Orthod. Dentofac. Orthop. 2017, 152, 870–874. [Google Scholar] [CrossRef] [Green Version]
- Baik, H.S.; Kang, Y.G.; Choi, Y.J. Miniscrew-assisted rapid palatal expansion: A review of recent reports. J. World Fed. Orthod. 2020, 9, S54–S58. [Google Scholar] [CrossRef]
- Carlson, C.; Sung, J.; McComb, R.W.; MacHado, A.W.; Moon, W. Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 716–728. [Google Scholar] [CrossRef]
- Kinzinger, G.; Wehrbein, H.; Byloff, F.K.; Yildizhan, F.; Diedrich, P. Innovative Verankerungsalternativen zur Molarendistalisation im Oberkiefer—Eine Übersicht. J. Orofac. Orthop. 2005, 66, 397–413. [Google Scholar] [CrossRef]
- Karaman, A.I.; Basciftci, F.A.; Polat, O. Unilateral Distal Molar Movement with an Implant-Supported Distal Jet Appliance. Angle Orthod. 2002, 72, 167–174. [Google Scholar]
- Wilmes, B.; Drescher, D.; Nienkemper, M. A miniplate system for improved stability of skeletal anchorage. J. Clin. Orthod. 2009, 43, 494–501. [Google Scholar]
- Wilmes, B.; Nanda, R.; Nienkemper, M.; Ludwig, B.; Drescher, D. Correction of upper-arch asymmetries using the Mesial-Distalslider. J. Clin. Orthod. 2013, 47, 648–655. [Google Scholar] [PubMed]
- Papadopoulos, M.A. Efficient Distalization of Maxillary Molars with Temporary Anchorage Devices for the Treatment of Class II Malocclusion. Turk. J. Orthod. 2020, 33, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Kook, Y.A.; Bayome, M.; Trang, V.T.T.; Kim, H.J.; Park, J.H.; Kim, K.B.; Behrents, R.G.G. Treatment effects of a modified palatal anchorage plate for distalization evaluated with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, D.; Savio, G.; Grigolato, L.; Zanata, P.; Berveglieri, C.; Giudice, A.L.L.; Isola, G.; Del Fabbro, M.; Moon, W. A new methodology for the digital planning of micro-implant-supported maxillary skeletal expansion. Med. Devices 2020, 13, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Luis, E.; Pan, H.M.; Sing, S.L.; Bastola, A.K.; Goh, G.D.; Goh, G.L.; Tan, H.K.K.J.; Bajpai, R.; Song, J.; Yeong, W.Y. Silicone 3D Printing: Process Optimization, Product Biocompatibility, and Reliability of Silicone Meniscus Implants. 3D Print Addit. Manuf. 2019, 6, 319–332. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Savio, G.; Rosso, S.; Meneghello, R.; Concheri, G. Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review. Appl. Bionics Biomech. 2018, 2018, 1654782. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, B.; Kruth, J.P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 2007, 13, 196–203. [Google Scholar] [CrossRef]
- Di Fiore, A.; Savio, G.; Stellini, E.; Vigolo, P.; Monaco, C.; Meneghello, R. Influence of ceramic firing on marginal gap accuracy and metal-ceramic bond strength of 3D-printed Co-Cr frameworks. J. Prosthet. Dent. 2020, 124, 75–80. [Google Scholar] [CrossRef]
Fabrication Parameter | Value |
---|---|
Laser power (W) | 90 |
Scan Speed (mm/min) | 800 |
Layer thickness (µm) | 20 |
Hatch spacing (µm) | 60 |
Component | Mass (%) |
---|---|
Co | 63.9 |
Cr | 24.7 |
W | 5.4 |
Mo | 5.0 |
Si | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantarella, D.; Quinzi, V.; Karanxha, L.; Zanata, P.; Savio, G.; Del Fabbro, M. Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement. Appl. Sci. 2021, 11, 928. https://doi.org/10.3390/app11030928
Cantarella D, Quinzi V, Karanxha L, Zanata P, Savio G, Del Fabbro M. Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement. Applied Sciences. 2021; 11(3):928. https://doi.org/10.3390/app11030928
Chicago/Turabian StyleCantarella, Daniele, Vincenzo Quinzi, Lorena Karanxha, Paolo Zanata, Gianpaolo Savio, and Massimo Del Fabbro. 2021. "Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement" Applied Sciences 11, no. 3: 928. https://doi.org/10.3390/app11030928
APA StyleCantarella, D., Quinzi, V., Karanxha, L., Zanata, P., Savio, G., & Del Fabbro, M. (2021). Digital Workflow for 3D Design and Additive Manufacturing of a New Miniscrew-Supported Appliance for Orthodontic Tooth Movement. Applied Sciences, 11(3), 928. https://doi.org/10.3390/app11030928