Influence of Coniferous Wood Conditioning by Pulsed Electric Field on Its Combustion Heat Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spruce Sawdust
3.2. Fir Sawdust
3.3. Larch Sawdust
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balat, M.; Acici, N.; Ersoy, G. Trends in the Use of Biomass as an Energy Source. Energy Sources Part B Econ. Plan. Policy 2006, 1, 367–378. [Google Scholar] [CrossRef]
- Uddin, M.; Techato, K.; Taweekun, J.; Rahman, M.M.; Rasul, M.; Mahlia, T.M.I.; Rahman, S.M.A. An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef] [Green Version]
- Papoutsidakis, M.; Symeonaki, E.; Tseles, D.; Drosos, C. The biomass as an energy source and its application benefits. Int. J. Eng. Appl. Sci. Technol. 2018, 2, 1–5. [Google Scholar]
- Spîrchez, C.; Lunguleasa, A.; Croitoru, C. The importance of the wood biomass in environment protection. AIP Conf. Proc. 2017, 1918, 1–10. [Google Scholar]
- Karlsson, O.; Sidorova, E.; Moren, T. Influence of Heat Transferring Media on Durability of Thermally Modified Wood. Bioresources 2011, 6, 356–372. [Google Scholar]
- Nanda, S.; Reddy, S.N.; Vo, D.V.N.; Sahoo, B.N.; Kozinski, J.A. Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Sci. Eng. 2018, 6, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Norouzi, O.; Safari, F.; Jafarian, S.; Tavasoli, A.; Karimi, A. Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al2O3 nanocatalysts. Energy Convers. Manag. 2017, 141, 63–71. [Google Scholar] [CrossRef]
- de Araujo Guilherme, A.; Dantas, P.V.F.; Padilha, C.E.D.A.; dos Santos, E.S.; de Macedo, G.R. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process. J. Environ. Manag. 2019, 234, 44–51. [Google Scholar] [CrossRef]
- Ko, J.H.; Kim, W.C.; Cho, J.S.; Choi, Y.I.; Park, E.J.; Im, J.H.; Han, O.; Keathley, D.; Han, K.H. EliteTreeTM: An advanced biomass tree crop technology that features greater wood density and accelerated stem growth. Biofuels Bioprod. Biorefining 2017, 11, 521–533. [Google Scholar] [CrossRef]
- Mitani, A.; Barboutis, I. Changes by heat treatment in color and dimensional stability of beech (Fagus sylvatica L.) wood. Drevna Industrija 2014, 65, 225–232. [Google Scholar] [CrossRef]
- Toscano, G.; Foppa, P.E. Calorific value determination of solid biomass fuel by simplified method. J. Agric. Eng. 2009, 3, 1–6. [Google Scholar] [CrossRef]
- Bell, D.A.; Towler, B.F.; Fan, M. The Nature of Coal. In Coal Gasification and Its Applications, 1st ed.; Bell, D.A., Towler, B.F., Fan, M., Eds.; William Andrew Publishing: Norwich, NY, USA, 2011; Volume 1, pp. 1–15. [Google Scholar]
- Günther, B.; Gebauer, K.; Barkowski, R.; Rosenthal, M.; Bues, C.T. Calorific value of selected wood species and wood products. Eur. J. Wood Wood Prod. 2012, 70, 755–757. [Google Scholar] [CrossRef]
- Orémusová, E.; Tereňová, L.; Réh, R. Evaluation of the gross and net calorific value of the selected wood species. Adv. Mater. Res. 2014, 1001, 292–299. [Google Scholar] [CrossRef]
- Demirbaş, A. Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources Part A Recovery Util. Environ. Eff. 2007, 29, 649–655. [Google Scholar] [CrossRef]
- Charbel, A.T.; Trinchero, B.D.; Morais, D.D.; Mesquita, H.; Birchal, V.S. Evaluation of the Potential of Fruit Peel Biomass after Conventional and Microwave Drying for Use as Solid Fuel. Appl. Mech. Mater. 2015, 798, 480–485. [Google Scholar] [CrossRef]
- Aniszewska, M.; Gendek, A. Comparison of heat of combustion and calorific value of the cones and wood of selected forest trees species. For. Res. Pap. 2014, 75, 231–236. [Google Scholar] [CrossRef] [Green Version]
- European Standard EN ISO 18125:2017 Solid Biofuels—Determination of Calorific Value; European Committee for Standardization: Brussels, Belgium, 2017.
- Jayakumar, E.; Chittibabu, S.; Shanmugasundaram, S.; Lope, G.T. Synergetic effect of microwave heated alkali pre-treatment on densification of rice (Oryza sativa) husk biomass grinds. Energy Sources Part A Recovery Util. Environ. Eff. 2019, in press. [Google Scholar]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef]
- Yu, N.; Cai, Y.; Li, X.; Fan, Y.; Yin, H.; Zhang, R. Catalytic pyrolysis of rape straw for upgraded bio-oil production using HZSM-5 zeolite. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2014, 30, 264–271. [Google Scholar]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, L.; Liu, D. Pretreatment of Siam weed stem by several chemical methods for increasing the enzymatic digestibility. Biotechnol. J. 2010, 5, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, J.M.; Chiralt, A.; Fito, P. Food dehydration and product structure. Trends Food Sci. Technol. 2003, 14, 432–437. [Google Scholar] [CrossRef]
- Welti-Chanes, J.; Guerrero, J.; Bárcenas, M.E.; Aguilera, J.; Vergara, F.; Barbosa-Cánovas, G. Glass transition temperature (Tg) and water activity (aw) of dehydrated apple products. J. Food Process Eng. 2007, 22, 91–101. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food Eng. Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Toepfl, S. Pulsed Electric Fields (PEF) for Permeabilization of Cell Membranes in Food- and Bioprocessing-Applications, Process and Equipment Design and Cost Analysis. Ph.D. Thesis, Technischen Universität, Berlin, Germany, 2006. [Google Scholar]
- Tylewicz, U.; Tappi, S.; Mannozzi, C.; Romani, S.; Dellarosa, N.; Laghi, L.; Ragni, L.; Rocculi, P.; Dalla Rosa, M. Effect of pulsed electric field (PEF) pre-treatment coupled with osmotic dehydration on physico-chemical characteristics of organic strawberries. J. Food Eng. 2017, 4, 66–78. [Google Scholar] [CrossRef]
- Wiktor, A.; Witrowa-Rajchert, D. Applying Pulsed Electric Field to enhance plant tissue dehydration process. Żywn. Nauka Technol. Jakość 2012, 2, 22–32. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess 2017, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Wesołowski, M.; Nęcka, K.; Dróżdż, T.; Kiełbasa, P. The concept of modeling a pulsed electric field discharge (PEF) in agricultural and food industry products. In polish. Prz. Elektrotech. 2018, 94, 119–123. [Google Scholar]
- Wesołowski, M.; Tabor, S.; Kiełbasa, P.; Kurpaska, S. Electromagnetic and thermal phenomena modeling of electrical discharges in liquids. Appl. Sci. 2020, 10, 3900. [Google Scholar] [CrossRef]
- European Standard EN ISO 18134-3:2015 Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part: Moisture in General Analysis Sample; European Committee for Standardization: Brussels, Belgium, 2015.
- Standard ISO 3534-1:2006 Statistics—Vocabulary and Symbols—Part: General Statistical Terms and Terms Used in Porbability; European Committee for Standardization: Brussels, Belgium, 2006.
- Sepulveda, D.R.; Gongora-Nieto, M.M.; Guerrero, J.A.; Barbosa Canovas, G.V. Shelf life of whole milk processed by pulsed electric fields in combination with PEF-generated heat. Food Sci. Technol. 2009, 42, 735–739. [Google Scholar] [CrossRef]
- Monfort, S.; Gayán, E.; Condón, S.; Raso, J.; Álvarez, I. Design of a combined process for the inactivation of Salmonella Enteritidis in liquid whole egg at 55 °C. Int. J. Food Microbiol. 2011, 145, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Monfort, S.; Saldaña, G.; Condón, S.; Raso, J.; Álvarez, I. Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiol. 2012, 30, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Mittal, G.S. Inactivation of natturally occuring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials. Chem. Eng. Process. 2007, 46, 360–365. [Google Scholar] [CrossRef]
- Mosqueda-Melgar, J.; Raybaudi-Massilia, R.M.; Martin-Belloso, O. Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov. Food Sci. Emerg. Technol. 2008, 9, 328–340. [Google Scholar] [CrossRef]
- Grimi, N.; Mamouni, F.; Lebovka, N.; Vorobiev, E.; Vaxelaire, J. Impact of apple processing modes on extracted juice quality: Pressing assisted by pulsed electric fields. J. Food Eng. 2011, 103, 52–61. [Google Scholar] [CrossRef]
- Liang, Z.; Cheng, Z.; Mittal, G.S. Inactivation of spoilage microorganisms in apple cider using a continuous flow pulsed electric field system. Food Sci. Technol. 2006, 39, 351–357. [Google Scholar] [CrossRef]
- Iu, J.; Mittal, G.S.; Griffiths, M.W. Reduction in levels of Escherichia coli O157:H7 in apple cider by pulsed electric fields. J. Food Prot. 2001, 64, 964–969. [Google Scholar] [CrossRef]
- Abenoza, M.; Benito, M.; Saldaña, G.; Álvarez, I.; Raso, J.; Sánchez-Gimeno, A.C. Effects of pulsed electric field on yield extraction and quality of olive oil. Food Bioprocess Technol. 2013, 6, 1367–1373. [Google Scholar] [CrossRef]
- Lamaunauskas, N.; Pataro, G.; Bobinas, C.; Satkauskas, S.; Viskelis, P.; Bobonaite, R.; Ferarri, G. Impact of pulsed electric field treatment on juice yield and recovery of bioactive compounds from raspberries and their by-products. Zemdirb. Agric. 2016, 103, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Guo, Y.; Zhang, D. Study of the Effect of High-Pulsed Electric Field treatment on Vacuum Freeze-Drying of Apples. Dry. Technol. 2011, 29, 1714–1720. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, D. Effect of Pulsed Electric Field on Freeze-Drying of Potato Tissue. IJFE 2014, 10, 857–862. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef]
- Raschke, D. Pulsed electric fields—Influence on Physiology, Structure and Extraction Processes of the Oleaginous Yeast Waltomyces lipofer. Ph.D. Thesis, Technischen Universität, Berlin, Germany, 2010. [Google Scholar]
- Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Effect of PEF and HVED on the polyphenols extraction from Quercus robur bark. In Proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environment Technologies, Portorož, Slovenia, 6–10 September 2015; Jarm, T., Kramar, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mahnič-Kalamiza, S.; Vorobiev, E.; Miklavčič, D. Electroporation in food processing and biorefinery. J. Membr. Biol. 2014, 247, 1279–1304. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Pulsed electric field pretreatment of switchgrass and wood chip species for biofuel production. Ind. Eng. Chem. Res. 2011, 50, 10996–11001. [Google Scholar] [CrossRef]
- Qin, J.; Pasko, V.P. On the propagation of streamers in electrical discharges. J. Phys. Part D Appl. Phys. 2014, 47, 435202. [Google Scholar] [CrossRef]
- Rhen, C.; Ohman, M.; Gref, R.; Wasterlund, I. Effect of raw material composition in woody biomass pellets on combustion characteristics. Biomass Bioenergy 2007, 31, 66–72. [Google Scholar] [CrossRef]
- Haykırı-Acma, H. Combustion characteristics of different biomass materials. Energy Convers. Manag. 2003, 44, 155–162. [Google Scholar] [CrossRef]
- Kucukbayrak, S.; Haykırı-Acma, H.; Ersoy-Mericboyu, A.; Yaman, S. Effect of lignite properties on reactivity of lignite. Energy Convers. Manag. 2001, 42, 613–626. [Google Scholar] [CrossRef]
- Haykırı-Acma, H.; Ersoy-Mericboyu, A.; Kucukbayrak, S. Effect of mineral matter on the reactivity of lignite chars Energy Convers. Manag. 2001, 42, 11–20. [Google Scholar]
- Rhen, C. Chemical composition and gross calorific value of the aboveground biomass components of young Picea abies. Scand. J. For. Res. 2004, 19, 72–81. [Google Scholar] [CrossRef]
- Nurmi, J. Heating values of mature trees. Acta For. Fenn. 1997, 256, 1–28. [Google Scholar] [CrossRef] [Green Version]
Point | Parameters | Combination I | Combination II | Combination III | Combination IV |
---|---|---|---|---|---|
Start measuring | t [s] | 0 | 0 | 0 | 0 |
T [°C] | 21.00 | 21.00 | 21.00 | 21.00 | |
Sample ignition | t [s] | 300 | 300 | 300 | 300 |
T [°C] | 21.00 | 21.00 | 21.00 | 21.00 | |
End of combustion | t [s] | 367 | 366 | 372 | 367 |
T [°C] | 22.14 | 22.17 | 22.24 | 22.30 | |
Temperature stabilization | t [s] | 375 | 373 | 379 | 375 |
T [°C] | 22.17 | 22.20 | 22.27 | 22.34 | |
End of measurement | t [s] | 463 | 475 | 491 | 478 |
T [°C] | 22.17 | 22.20 | 22.27 | 22.34 |
Point | Parameters | Combination I | Combination II | Combination III | Combination IV |
---|---|---|---|---|---|
Start measuring | t (s) | 0 | 0 | 0 | 0 |
T (°C) | 21.00 | 21.00 | 22.00 | 22.00 | |
Sample ignition | t (s) | 300 | 300 | 300 | 300 |
T (°C) | 21.00 | 22.00 | 22.00 | 22.00 | |
End of combustion | t (s) | 384 | 375 | 401 | 390 |
T (°C) | 22.20 | 22.30 | 22.30 | 22.40 | |
Temperature stabilization | t (s) | 394 | 384 | 422 | 406 |
T (°C) | 22.20 | 22.30 | 22.40 | 22.40 | |
End of measurement | t (s) | 506 | 491 | 536 | 506 |
T (°C) | 22.20 | 22.30 | 22.40 | 22.40 |
Point | Parameters | Combination I | Combination II | Combination III | Combination IV |
---|---|---|---|---|---|
Start measuring | t (s) | 0 | 0 | 0 | 0 |
T (°C) | 22.00 | 22.00 | 22.00 | 22.00 | |
Sample ignition | t (s) | 300 | 300 | 300 | 300 |
T (°C) | 22.00 | 22.00 | 22.00 | 22.00 | |
End of combustion | t (s) | 361 | 378 | 359 | 381 |
T (°C) | 22.40 | 22.40 | 22.40 | 22.43 | |
Temperature stabilization | t (s) | 367 | 400 | 367 | 402 |
T (°C) | 22.40 | 22.40 | 22.40 | 22.44 | |
End of measurement | t (s) | 455 | 575 | 486 | 511 |
T (°C) | 22.40 | 22.40 | 22.40 | 22.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiełbasa, P.; Dróżdż, T.; Popardowski, E. Influence of Coniferous Wood Conditioning by Pulsed Electric Field on Its Combustion Heat Characteristics. Appl. Sci. 2021, 11, 983. https://doi.org/10.3390/app11030983
Kiełbasa P, Dróżdż T, Popardowski E. Influence of Coniferous Wood Conditioning by Pulsed Electric Field on Its Combustion Heat Characteristics. Applied Sciences. 2021; 11(3):983. https://doi.org/10.3390/app11030983
Chicago/Turabian StyleKiełbasa, Paweł, Tomasz Dróżdż, and Ernest Popardowski. 2021. "Influence of Coniferous Wood Conditioning by Pulsed Electric Field on Its Combustion Heat Characteristics" Applied Sciences 11, no. 3: 983. https://doi.org/10.3390/app11030983
APA StyleKiełbasa, P., Dróżdż, T., & Popardowski, E. (2021). Influence of Coniferous Wood Conditioning by Pulsed Electric Field on Its Combustion Heat Characteristics. Applied Sciences, 11(3), 983. https://doi.org/10.3390/app11030983