Thermogravimetry Applicability in Compost and Composting Research: A Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Composting Evolution Research by Using a Variety of Techniques.
3.1.1. Composting Evolution Research by Thermogravimetry
3.1.2. Composting Evolution Research by Thermogravimetry and Thermal Analysis
3.1.3. Composting Evolution Research Studies by Combining Different Thermal and Analytical Techniques
3.2. Compost Maturity Evaluation Research by Using a Variety of Techniques
3.2.1. Composting Maturity Research by Thermogravimetry
3.2.2. Composting Maturity Research by Thermogravimetry and Thermal Analysis
3.2.3. Composting Maturity Research by Combining Different Thermal and Analytical Techniques
3.3. Thermogravimetry in Compost Combustion
Thermogravimetry in Kinetic of Compost Combustion
3.4. Thermogravimetry in Compost Pyrolysis
3.4.1. Thermogravimetry in Compost Bio-Oil Production
3.4.2. Thermogravimetry in Compost Hydrogen Production
3.4.3. Thermogravimetry in Kinetic of Compost Pyrolysis
3.4.4. Thermogravimetry in Activated Carbon from Compost Pyrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oncioiu, I.; Căpuşneanu, S.; Topor, D.I.; Petrescu, M.; Petrescu, A.G.; Toader, M.I. The Effective Management of Organic Waste Policy in Albania. Energies 2020, 13, 4217. [Google Scholar] [CrossRef]
- Liu, T.; Ren, X.; Zhao, J.; Chen, H.; Wang, Q.; Awasthi, S.K.; Duan, Y.; Pandey, A.; Taherzadeh, M.J.; Awasthi, M.K.; et al. Chapter 13-Sustainability analysis of large-scale food waste composting. Curr. Dev. Biotechnol. Bioeng. 2020, 301–322. [Google Scholar] [CrossRef]
- Barker, A.V. Composition and Uses of Compost. ACS Symp. Ser. Agric. Uses By-Prod. Wastes 1997, 140–162. [Google Scholar] [CrossRef]
- Feist, M. Thermal analysis: Basics, applications, and benefit. ChemTexts 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Dell’Abate, M.T.; Benedetti, A.; Sequi, P. Thermal Methods of Organic Matter Maturation Monitoring During a Composting Process. J. Therm. Anal. Calorim. 2000, 61, 389–396. [Google Scholar] [CrossRef]
- Schnitzer, M.; Hoffman, I. A Thermogravimetric Approach to the Classification of Organic Soils. Soil Sci. Soc. Am. J. 1966, 30, 63–66. [Google Scholar] [CrossRef]
- Schnitzer, M.; Hoffman, I. Thermogravimetry of soil humic compounds. Geochim. Cosmochim. Acta 1965, 29, 859–870. [Google Scholar] [CrossRef]
- Mitchell, B.D.; Birnie, A.C. Biological Materials. In Differential Thermal Analysis; Mackenzie, R.C., Ed.; Academic Press: London, UK, 1970; Volume 1, pp. 673–704. [Google Scholar]
- Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Pérez-Murcia, M.D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Jara-Samaniego, J.; Pérez-Murcia, M.D.; Bustamante, M.A.; Paredes, C.; Pérez-Espinosa, A.; Gavilanes-Terán, I.; López, M.; Marhuenda-Egea, F.C.; Brito, H.; Moral, R. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’abate, M.T.; Canali, S.; Trinchera, A.; Benedetti, A.; Sequi, P. Thermal analysis in the evaluation of compost stability: A comparison with humification parameters. Nutr. Cycl. Agrocecosyst. 1998, 51, 217–224. [Google Scholar] [CrossRef]
- Dell’abate, M.T.; Benedetti, A.; Brookes, P.C. Hyphenated techniques of thermal analysis for characterisation of soil humic substances. J. Sep. Sci. 2003, 26, 433–440. [Google Scholar] [CrossRef]
- Melis, P.; Castaldi, P. Thermal analysis for the evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim. Acta 2004, 413, 209–214. [Google Scholar] [CrossRef]
- Lyons, G.A.; Sharma, H.S.S.; Kilpatrick, M.; Cheung, L.; Moore, S. Monitoring of Changes in Substrate Characteristics during Mushroom Compost Production. J. Agric. Food Chem. 2006, 54, 4658–4667. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Gomez-Rico, M.; Font, R. Use of thermogravimetry for single characterisation of samples of the composting process from sewage sludge. J. Anal. Appl. Pyrol. 2013, 103, 261–267. [Google Scholar] [CrossRef]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fares, F.; Albalkhi, A.; Dec, J.; Bruns, M.A.; Bollag, J.M. Physicochemical Characteristics of Animal and Municipal Wastes Decomposed in Arid Soils. J. Environ. Qual. 2005, 34, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Marhuenda-Egea, F.; Martínez-Sabater, E.; Jordá, J.; Sánchez-Sánchez, A.; Moral, R.; Bustamante, M.; Paredes, C.; Pérez-Murcia, M. Evaluation of the aerobic composting process of winery and distillery residues by thermal methods. Thermochim. Acta 2007, 454, 135–143. [Google Scholar] [CrossRef]
- Nada, W.; Van Rensburg, L.; Claassens, S.; Blumenstein, O.; Friedrich, A. Evaluation of Organic Matter Stability in Wood Compost by Chemical and Thermogravimetric Analysis. Int. J. Environ. Res. 2012, 6, 425–434. [Google Scholar] [CrossRef]
- Razali, W.A.W.; Baharuddin, A.S.; Zaini, L.A.; Mokhtar, M.N.; Taip, F.S.; Zakaria, R. Effect of Seed Sludge Quality using Oil Palm Empty Fruit Bunch (OPEFB) Bio-Char for Composting. BioResources 2014, 9, 2739–2756. [Google Scholar] [CrossRef]
- Nadia, O.F.; Xiang, L.Y.; Lie, L.Y.; Anuar, D.C.; Afandi, M.P.M.; Baharuddin, S.A. Investigation of physico-chemical properties and microbial community during poultry manure co-composting process. J. Environ. Sci. 2015, 28, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, V.; Awasthi, M.K.; Wang, Q.; Kumar, J.; Ren, X.; Zhao, J.; Chen, H.; Wang, M.; Bhaskar, T.; Zhang, Z. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste. Bioresour. Technol. 2018, 252, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.A.; Eudoxie, G.; Stein, R.; Ramnarine, R.; Raghavan, V. Effect of neem leaf inclusion rates on compost physico-chemical, thermal and spectroscopic stability. Waste Manag. 2020, 114, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Eliche-Quesada, D.; Corpas-Iglesias, F.A.; Pérez-Villarejo, L.; Iglesias-Godino, F.J. Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Constr. Build. Mater. 2012, 34, 275–284. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Zhang, Y.; Li, L.; Shi, X.; Liu, X.; Ren, X.; Dou, S. Transformation of Corn Stalk Residue to Humus-Like Substances during Solid-State Fermentation. Sustainability 2019, 11, 6771. [Google Scholar] [CrossRef] [Green Version]
- Baigorri, R.; Fuentes, M.; González-Gaitano, G.; García-Mina José, M.; Almendros, G.; González-Vila Francisco, J. Complementary Multianalytical Approach To Study the Distinctive Structural Features of the Main Humic Fractions in Solution: Gray Humic Acid, Brown Humic Acid, and Fulvic Acid. J. Agric. Food Chem. 2009, 57, 3266–3272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, H. Compositional analysis of neutral detergent, acid detergent, lignin and humus fractions of mushroom compost. Thermochim. Acta 1996, 285, 211–220. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.; Sun, Y.; Wong, J.W.C.; Fang, M. Chemical Evaluation of Sewage Sludge Composting as a Mature Indicator for Composting Process. Water Air Soil. Poll. 2001, 132, 333–345. [Google Scholar] [CrossRef]
- Ranalli, G.; Bottura, G.; Taddei, P.; Garavani, M.; Marchetti, R.; Sorlini, C. Composting Of Solid And Sludge Residues From Agricultural And Food Industries. Bioindicators Of Monitoring And Compost Maturity. J. Environ. Sci. Health A 2001, 36, 415–436. [Google Scholar] [CrossRef] [PubMed]
- Dresboll, D.; Magid, J. Structural changes of plant residues during decomposition in a compost environment. Bioresour. Technol. 2006, 97, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Carballo, T.; Gil, M.V.; Gómez, X.; González-Andrés, F.; Morán, A. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation 2008, 19, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Som, M.P.; Lemée, L.; Amblès, A. Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresour. Technol. 2009, 100, 4404–4416. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.S.S.; Lyons, G.; Chambers, J. Comparison of the changes in mushroom (Agaricus bisporus) compost during windrow and bunker stages of phase I and II. Ann. Appl. Biol. 2000, 136, 59–68. [Google Scholar] [CrossRef]
- Blanco, M.; Almendros, G. Chemical transformation, phytotoxicity and nutrient availability in progressive composting stages of wheat straw. Plant. Soil. 1997, 196, 15–25. [Google Scholar] [CrossRef]
- Soobhany, N.; Gunasee, S.; Rago, Y.P.; Joyram, H.; Raghoo, P.; Mohee, R.; Garg, V.K. Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity. Bioresour. Technol. 2017, 236, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Smidt, E.; Schwanninger, M. Characterization of Waste Materials Using FTIR Spectroscopy: Process Monitoring and Quality Assessment. Spectrosc. Lett. 2005, 38, 247–270. [Google Scholar] [CrossRef]
- Gómez, X.; Diaz, M.C.; Cooper, M.; Blanco, D.; Morán, A.; Snape, C.E. Study of biological stabilization processes of cattle and poultry manure by thermogravimetric analysis and 13C NMR. Chemosphere 2007, 68, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Qu, P.; Sun, E.; Chang, Z.; Xu, Y.; Huang, H. Physical, Chemical, and Rheological Properties of Rice Husks Treated by Composting Process. BioResources 2014, 10, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Sonoki, T.; Matsumoto, K.; Canellas, L.; Roig, A.; Sanchez-Monedero, M.A. Influence of biochar addition on the humic substances of composting manures. Waste Manag. 2016, 49, 545–552. [Google Scholar] [CrossRef]
- Ali, M.; Bhatia, A.; Kazmi, A.A.; Ahmed, N. Characterization of high rate composting of vegetable market waste using Fourier transform-infrared (FT-IR) and thermal studies in three different seasons. Biodegradation 2011, 23, 231–242. [Google Scholar] [CrossRef]
- Otero, M.; Calvo, L.; Estrada, B.; García, A.I.; Morán, A. Thermogravimetry as a technique for establishing the stabilization progress of sludge from wastewater treatment plants. Thermochim. Acta 2002, 389, 121–132. [Google Scholar] [CrossRef]
- Bernabé, G.A.; Kobelnik, M.; Almeida, S.; Ribeiro, C.A.; Crespi, M.S. Thermal behavior of lignin and cellulose from waste composting process. J. Therm. Anal. Calorim. 2012, 111, 589–595. [Google Scholar] [CrossRef]
- Martín-Mata, J.; Lahoz-Ramos, C.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Moral, R.; Santos, A.; Sáez, J.A.; Bernal, M.P. Thermal and spectroscopic analysis of organic matter degradation and humification during composting of pig slurry in different scenarios. Environ. Sci. Poll. Res. 2016, 23, 17357–17369. [Google Scholar] [CrossRef] [PubMed]
- Pelegrín, M.; Sáez-Tovar, J.; Andreu-Rodríguez, J.; Pérez-Murcia, M.; Martínez-Sabater, E.; Marhuenda-Egea, F.; Pérez-Espinosa, A.; Bustamante, M.; Agulló, E.; Vico, A.; et al. Composting of the invasive species Arundo donax with sewage and agri-food sludge: Agronomic, economic and environmental aspects. Waste Manag. 2018, 78, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, G.A.; Almeida, S.; Ribeiro, C.A.; Crespi, M.S. Evaluation of organic molecules originated during composting process. J. Therm. Anal. Calorim. 2011, 106, 773–778. [Google Scholar] [CrossRef]
- Dell’Abate, M.T.; Tittarelli, F. Monitoring of a Composting Process: Thermal Stability of Raw Materials and Products. In Microbiology of Composting; Insam, H., Riddech, N., Klammer, S., Eds.; Springer: Berlin, Heidelberg, 2002; pp. 357–371. [Google Scholar] [CrossRef]
- Mondini, C.; Dell’abate, M.T.; Leita, L.; Benedetti, A. An Integrated Chemical, Thermal, and Microbiological Approach to Compost Stability Evaluation. J. Environ. Qual. 2003, 32, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.M.; Plaza, C.; Polo, A.; Plante, A.F. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application. Waste Manag. 2012, 32, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Ouaqoudi, F.Z.E.; Fels, L.E.; Winterton, P.; Lemée, L.; Amblès, A.; Hafidi, M. Study of Humic Acids during Composting of Ligno-Cellulose Waste by Infra-Red Spectroscopic and Thermogravimetric/Thermal Differential Analysis. Compos. Sci. Util. 2014, 22, 188–198. [Google Scholar] [CrossRef]
- Ouaqoudi, F.Z.E.; Fels, L.E.; Lemée, L.; Amblès, A.; Hafidi, M. Evaluation of lignocelullose compost stability and maturity using spectroscopic (FTIR) and thermal (TGA/TDA) analysis. Ecol. Eng. 2015, 75, 217–222. [Google Scholar] [CrossRef]
- Iñiguez-Covarrubias, G.; Díaz-Teres, R.; Sanjuan-Dueñas, R.; Anzaldo-Hernández, J.; Rowell, R.M. Utilization of by-products from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves. Bioresour. Technol. 2001, 77, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Qu, P.; Huang, H.; Zhao, Y.; Wu, G. Physicochemical changes in rice straw after composting and its effect on rice-straw-based composites. J. Appl. Polym. Sci. 2017, 134, 44878. [Google Scholar] [CrossRef]
- Hussain, N.; Abbasi, T.; Abbasi, S. Transformation of toxic and allelopathic lantana into a benign organic fertilizer through vermicomposting. Spectrochim. Acta A 2016, 163, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Ouaqoudi, F.Z.E.; Meddich, A.; Lemée, L.; Amblès, A.; Hafidi, M. Assessment of Compost-Derived Humic Acids Structure from Ligno-Cellulose Waste by TMAH-Thermochemolysis. Waste Biomass Valor 2018, 10, 2661–2672. [Google Scholar] [CrossRef]
- Siddiqui, S.; Alamri, S.; Rumman, S.A.; Al-Kahtani, M.A.; Meghvansi, M.K.; Jeridi, M.; Shumail, T.; Moustafa, M. Recent Advances in Assessing the Maturity and Stability of Compost. In Biology of Composts. Soil Biology; Meghvansi, M., Varma, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 58, pp. 181–202. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, I.T. Composting parameters and compost quality: A literature review. Org. Agr. 2017, 8, 141–158. [Google Scholar] [CrossRef]
- Blanco, M.J.; Almendros, G. Maturity Assessment of Wheat Straw Composts by Thermogravimetric Analysis. J. Agric. Food Chem. 1994, 42, 2454–2459. [Google Scholar] [CrossRef]
- Marouani, E.; Benzina, N.K.; Ziadi, N.; Bouslimi, B.; Abouda, A.; Koubaa, A. Deinking sludge compost stability and maturity assessment using Fourier transform infrared spectroscopy and thermal analysis. Waste Manag. Res. 2019, 37, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Droussi, Z.; D’Orazio, V.; Hafidi, M.; Ouatmane, A. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products. J. Hazard. Mater. 2009, 163, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Baffi, C.; Dell’Abate, M.T.; Nassisi, A.; Silva, S.; Benedetti, A.; Genevini, P.L.; Adani, F. Determination of biological stability in compost: A comparison of methodologies. Soil. Biol. Biochem. 2007, 39, 1284–1293. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y. Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecol. Eng. 2015, 84, 515–519. [Google Scholar] [CrossRef]
- Morales, A.; Bustamante, M.; Marhuenda-Egea, F.; Moral, R.; Ros, M.; Pascual, J. Agri-food sludge management using different co-composting strategies: Study of the added value of the composts obtained. J. Clean. Prod. 2016, 121, 186–197. [Google Scholar] [CrossRef]
- Srivastava, V.; Goel, G.; Thakur, V.K.; Singh, R.P.; Araujo, A.S.F.D.; Singh, P. Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. J. Environ. Manag. 2020, 255, 109914. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Boogaerts, C.; Vandaele, E. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Manag. 2016, 58, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Komilis, D.; Kissas, K.; Symeonidis, A. Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. Waste Manag. 2014, 34, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Macias-Corral, M.A.; Samani, Z.A.; Hanson, A.T.; Funk, P.A. Co-digestion of agricultural and municipal waste to produce energy and soil amendment. Waste Manag. Res. 2017, 35, 991–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrington, S.; Choiniere, D.; Trigui, M.; Knight, W. Effect of carbon source on compost nitrogen and carbon losses. Bioresour. Technol. 2002, 83, 189–194. [Google Scholar] [CrossRef]
- Malat’ák, J.; Bradna, J.; Velebil, J. Combustion of briquettes from oversize fraction of compost from wood waste and other biomass residues. Agron. Res. 2016, 14, 525–532. [Google Scholar]
- Ružbarský, J.; Müller, M.; Hrabě, P. Analysis of physical and mechanical properties and of gross calorific value of Jatropha curcas seeds and waste from pressing process. Agron. Res. 2014, 12, 603–610. [Google Scholar]
- Malaťák, J.; Bradna, J.; Velebil, J.; Gendek, A.; Ivanova, T. Evaluation of dried compost for energy use via co-combustion with wood. Agron. Res. 2018, 16, 157–166. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Zhao, J.; Chen, L.; Meng, H. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Bioresour. Technol. 2014, 169, 220–228. [Google Scholar] [CrossRef]
- Singh, G.; Shamsuddin, M.R.; Aqsha; Lim, S.W. Characterization of Chicken Manure from Manjung Region. IOP Conf. Ser. Mater. Sci. Eng. 2018, 458, 012084. [Google Scholar] [CrossRef]
- López-González, D.; Avalos-Ramirez, A.; Ghorbel, L.; Rouissi, T.; Brar, S.K.; Giroir-Fendler, A.; Godbout, S.; Palacios, J.; Sanchez-Silva, L.; Valverde, J.L. Valorization of compost from animal breeding via pyrolysis and combustion. In Proceedings of the ASABE and CSBE/SCGAB Annual International Meeting, Montreal, QC, Canada, 13–16 July 2014. [Google Scholar] [CrossRef]
- Sánchez-Silva, L.; Gutiérrez, N.; Romero, A.; Sánchez, P.; Valverde, J.L. Pyrolysis and combustion kinetics of microcapsules containing carbon nanofibers by thermal analysis-mass spectrometry. J. Anal. Appl. Pyrolysis 2012, 94, 246–252. [Google Scholar] [CrossRef]
- Liu, N.A.; Fan, W.; Dobashi, R.; Huang, L. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. J. Anal. Appl. Pyrolysis 2002, 63, 303–325. [Google Scholar] [CrossRef]
- Doña-Grimaldi, V.M.; Palma, A.; Ruiz-Montoya, M.; Morales, E.; Díaz, M.J. Energetic valorization of MSW compost valorization by selecting the maturity conditions. J. Environ. Manag. 2019, 238, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. General Treatment of the Thermogravimetry of Polymers. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1966, 70A, 487–523. [Google Scholar] [CrossRef]
- Kastanaki, E.; Vamvuka, D.; Grammelis, P.; Kakaras, E. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Process. Technol. 2002, 77–78, 159–166. [Google Scholar] [CrossRef]
- Raclavska, H.; Juchelkova, D.; Skrobankova, H.; Wiltowski, T.; Campen, A. Conditions for energy generation as an alternative approach to compost utilization. Environ. Technol. 2011, 32, 407–417. [Google Scholar] [CrossRef]
- Aboyade, A.O.; Hugo, T.J.; Carrier, M.; Meyer, E.L.; Stahl, R.; Knoetze, J.H.; Görgens, J.F. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim. Acta 2011, 517, 81–89. [Google Scholar] [CrossRef]
- Barneto, A.G.; Carmona, J.A.; Alfonso, J.E.M.; Blanco, J.D. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J. Anal. Appl. Pyrol. 2009, 86, 108–114. [Google Scholar] [CrossRef]
- Rulkens, W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energy Fuels 2008, 22, 9–15. [Google Scholar] [CrossRef]
- Stępień, P.; Serowik, M.; Koziel, J.A.; Białowiec, A. Waste to carbon energy demand model and data based on the TGA and DSC analysis of individual MSW components. Data 2019, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- López-González, D.; Fernandez-Lopez, M.; Valverde, J.L.; Sanchez-Silva, L. Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Appl. Energy 2014, 114, 227–237. [Google Scholar] [CrossRef]
- Ryu, C.; Finney, K.; Sharifi, V.N.; Swithenbank, J. Pelletised fuel production from coal tailings and spent mushroom compost—Part I. Identification of pelletisation parameters. Fuel Process. Technol. 2008, 89, 269–275. [Google Scholar] [CrossRef]
- Finney, K.N.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. The reuse of spent mushroom compost and coal tailings for energy recovery: Comparison of thermal treatment technologies. Bioresour. Technol. 2009, 100, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Garrido, R.; Ruiz-Felix, M.N.; Satrio, J.A. Effects of Hydrolysis and Torrefaction on Pyrolysis Product Distribution of Spent Mushroom Compost (SMC). Int. J. Environ. Poll. Remed. 2012, 1, 98–103. [Google Scholar] [CrossRef] [Green Version]
- López-González, D.; Fernandez-Lopez, M.; Valverde, J.L.; Sanchez-Silva, L. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour. Technol. 2013, 143, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, L.; Rouissi, T.; Brar, S.K.; López-González, D.; Ramirez, A.A.; Godbout, S. Value-added performance of processed cardboard and farm breeding compost by pyrolysis. Waste Manag. 2015, 38, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-E.; Jo, J.-H.; Kim, I.-T.; Yoo, Y.-S. Value-Added Performance and Thermal Decomposition Characteristics of Dumped Food Waste Compost by Pyrolysis. Energies 2018, 11, 1061. [Google Scholar] [CrossRef] [Green Version]
- Giwa, A.S.; Xu, H.; Wu, J.; Li, Y.; Chang, F.; Zhang, X.; Jin, Z.; Huang, B.; Wang, K. Sustainable recycling of residues from the food waste (FW) composting plant via pyrolysis: Thermal characterization and kinetic studies. J. Clean. Prod. 2018, 180, 43–49. [Google Scholar] [CrossRef]
- Sanchez-Silva, L.; López-González, D.; Villaseñor, J.; Sánchez, P.; Valverde, J.L. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour. Technol. 2012, 109, 163–172. [Google Scholar] [CrossRef]
- Widyawati, M.; Church, T.L.; Florin, N.H.; Harris, A.T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. Int. J. Hydrog. Energy 2011, 36, 4800–4813. [Google Scholar] [CrossRef]
- Crespi, M.S.; Silva, A.R.; Ribeiro, C.A.; Oliveira, S.C.; Santiago-Silva, M.R. Composting of Urban Solid Residues (USR) by different disposition. Kinetics of thermal decomposition. J. Therm. Anal. Calorim. 2003, 72, 1049–1056. [Google Scholar] [CrossRef]
- Silva, A.R.; Crespi, M.S.; Ribeiro, C.A.; Oliveira, S.C.; Santiago-Silva, M.R. Kinetic of Thermal Decomposition of Residues from Different Kinds of Composting. J. Therm. Anal. Calorim. 2004, 75, 401–409. [Google Scholar] [CrossRef]
- Šesták, J.; Berggren, G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperature. Thermochim. Acta 1971, 3, 1–13. [Google Scholar] [CrossRef]
- Sait, H.H.; Hussain, A.; Salema, A.A.; Ani, F.N. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour. Technol. 2012, 118, 382–389. [Google Scholar] [CrossRef]
- Palma, A.; Doña-Grimaldi, V.M.; Ruiz-Montoya, M.; Giráldez, I.; García, J.C.; Loaiza, J.M.; López, F.; Díaz, M.J. MSW Compost Valorization by Pyrolysis: Influence of Composting Process Parameters. ACS Omega 2020, 5, 20810–20816. [Google Scholar] [CrossRef]
- García Barneto, A.; Ariza Carmona, J.; Conesa Ferrer, J.A.; Díaz Blanco, M.J. Kinetic study on the thermal degradation of a biomass and its compost: Composting effect on hydrogen production. Fuel 2010, 89, 462–473. [Google Scholar] [CrossRef]
- Qian, Q.; Machida, M.; Tatsumoto, H. Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresour. Technol. 2007, 98, 353–360. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, M.J.; Ruiz-Montoya, M.; Palma, A.; de-Paz, M.-V. Thermogravimetry Applicability in Compost and Composting Research: A Review. Appl. Sci. 2021, 11, 1692. https://doi.org/10.3390/app11041692
Díaz MJ, Ruiz-Montoya M, Palma A, de-Paz M-V. Thermogravimetry Applicability in Compost and Composting Research: A Review. Applied Sciences. 2021; 11(4):1692. https://doi.org/10.3390/app11041692
Chicago/Turabian StyleDíaz, Manuel Jesús, Mercedes Ruiz-Montoya, Alberto Palma, and M.-Violante de-Paz. 2021. "Thermogravimetry Applicability in Compost and Composting Research: A Review" Applied Sciences 11, no. 4: 1692. https://doi.org/10.3390/app11041692
APA StyleDíaz, M. J., Ruiz-Montoya, M., Palma, A., & de-Paz, M.-V. (2021). Thermogravimetry Applicability in Compost and Composting Research: A Review. Applied Sciences, 11(4), 1692. https://doi.org/10.3390/app11041692