Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications
Abstract
:1. Introduction
2. Synthesis of Yttrium
2.1. Hydrothermal Process
2.2. Precipitation Method
2.3. The Sol-Gel Method
2.4. Flame Spray Pyrolysis (FSP)
2.5. Citrate Precipitation Method
2.6. Microplasma-Assisted Method
2.7. Acid Composition Mediated Method
2.8. Extraction of Y2O3 Synthesis
2.9. Green Synthesis
3. Biomedical Applications of Yttrium Oxides Nanoparticles
3.1. Antibacterial Activity
3.2. Anticancer Activity
3.3. Hepatoprotective Role of Y2O3
3.4. Actions as Antioxidant
4. Drug Delivery Applications
5. Luminescence and Imaging
6. Practical Applications and Future Research Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakur, N.; Manna, P.; Das, J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J. Nanobiotechnol. 2019, 17, 84. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.C.; Wang, A.Z. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. 2014, 6, 9–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Geological Survey. Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2019.
- Dasgupta, N.; Krishnamoorthy, R.; Jacob, K.T. Glycol—nitrate combustion synthesis of fine sinter-active yttria. Int. J. Inorg. Mater. 2001, 3, 143–149. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Ananthasivan, K.; Hari Kumar, K.C. Studies on the synthesis of nanocrystalline yttria powder by oxalate deagglomeration and its sintering behavior. Ceram. Int. 2015, 41, 5270–5280. [Google Scholar] [CrossRef]
- Kwo, J.; Hong, M.; Kortan, A.R.; Queeney, L.; Chabal, Y.J.; Mannaerts, J.P.; Boone, T.; Krajewski, J.J.; Sergent, A.M.; Rosamilia, J.M. High ε gate dielectrics Gd2O3 andY2O3 for silicon. Appl. Phys. Lett. 2000, 77, 130–132. [Google Scholar] [CrossRef]
- Rastogi, A.C.; Desu, S.B. Current conduction and dielectric behavior of high k-Y2O3 films integrated with Si using chemical vapor deposition as a gate dielectric for metal-oxide semiconductor devices. J. Electroceram. 2004, 13, 121–127. [Google Scholar] [CrossRef]
- Rastogi, A.C.; Sharma, N. Interfacial charge trapping in extrinsic Y2O3/SiO2 bilayer gate dielectric based MIS devices on Si (100). Semicond. Sci. Technol. 2001, 16, 641–650. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chen, J.-Z. Ultrafast atmospheric-pressure-plasma-jet processed conductive plasma-resistant Y2O3/carbon-nanotube nanocomposite. J. Alloy. Compd. 2015, 651, 357–362. [Google Scholar] [CrossRef]
- Xu, Y.-N.; Gu, Z.-q.; Ching, W.Y. Electronic, structural, and optical properties of crystalline yttria. Phys. Rev. B 1997, 56, 14993–15000. [Google Scholar] [CrossRef]
- Kenyon, A.J. Recent developments in rare-earth-doped materials for optoelectronics. Prog. Quant. Electron. 2002, 26, 225–284. [Google Scholar] [CrossRef]
- Wen, W.; Yang, X.; Wang, X.; Shu, L.G.H. Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating. J. Solid. State. Electrochem. 2015, 19, 1235–1246. [Google Scholar] [CrossRef]
- Wu, F.; Wang, M.; Su, Y.; Chen, S. Surface modification of LiCo1/3Ni1/3Mn1/3O2 with Y2O3 for lithium-ion battery. J. Power Sources 2009, 189, 743–747. [Google Scholar] [CrossRef]
- Kong, J.; Tang, D.Y.; Zhao, B.; Lu, J.; Ueda, K.; Yagi, H.; Yanagitani, T. 9.2-W diodeeendepumped Yb:Y2O3 ceramic laser. Appl. Phys. Lett. 2005, 86, 161116. [Google Scholar] [CrossRef]
- Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A composite material based onnanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. Mater. Sci. Eng. C 2016, 66, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Khajelakzay, M.; Razavi, R.S.; Barekat, M.; Naderi, M. Synthesis of yttria nanopowders by two precipitation methods and investigation of synthesis conditions. Int. J. Appl. Ceram. Technol. 2016, 13, 209. [Google Scholar] [CrossRef]
- Kannan, S.K.; Sundararajan, M. Biosynthesis of yttrium oxide nanoparticles using Acalypha indica leaf extract. Bull. Mat. Sci. 2015, 38, 945–950. [Google Scholar] [CrossRef]
- Andelman, T.; Gordonov, S.; Busto, G.; Moghe, P.V.; Riman, R.E. Synthesis and cytotoxicity of Y2O3 nanoparticles of various morphologies nanoscale. Res. Lett. 2010, 5, 263. [Google Scholar]
- Bondar, V.V. Structure and luminescence properties of individual and multi-layer thin-film systems based on oxide phosphors. Mater. Sci. Eng. B 2000, 69–70, 505–509. [Google Scholar] [CrossRef]
- Tilloca, G. Synthesis of ultrafine pure and yttria-stabilized hafnia by solid-state reaction at relatively low temperature. J. Mater. Sci. 1995, 30, 1884–1889. [Google Scholar] [CrossRef]
- De, G.; Qin, W.; Zhang, J.; Zhao, D.; Zhang, J. Bright-green upconversion emission of hexagonal LaF3: Yb3+, Er3+ nanocrystals. Chem. Lett. 2005, 34, 914–991. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Y.; Zhang, Y.; Gao, J. Effects of Y2O3 upon mechanical properties of laser coating. Chin. Opt. Lett. 2005, 3, 530–532. [Google Scholar]
- Verhiest, K.; Almazouzi, A.; Wispelaere, N.; Petrov, R.; Claessens, S. Development of oxides dispersion strengthened steels for high-temperature nuclear reactor applications. J. Nucl. Mater. 2009, 385, 308. [Google Scholar] [CrossRef]
- Wang, Z.C.; Kim, K.B. Fabrication of YSZ thin films from suspension by electrostatic spray deposition. Mater. Lett. 2008, 62, 425. [Google Scholar] [CrossRef]
- Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2004, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, D.K.; Behari, J.; Sen, P. Application of nanoparticles in wastewater treatment. World. Appl. Sci. J. 2008, 47, 3931–3946. [Google Scholar]
- Ghodake, G.; Shinde, S.; Saratale, G.D.; Kadam, A.; Saratale, R.G.; Kim, D.Y. Water purification filter prepared by layer-by-layer assembly of paper filter and polypropylene-polyethylene woven fabrics decorated with silver nanoparticles. Fibers Polym. 2020, 21, 751–761. [Google Scholar] [CrossRef]
- Saratale, G.D.; Saratale, R.G.; Cho, S.K.; Ghodake, G.; Bharagava, R.M.; Park, Y.; Mulla, S.I.; Kim, D.S.; Kadam, A.; Nair, S.; et al. Investigation of photocatalytic degradation of reactive textile dyes by Portulaca oleracea-functionalized silver nanocomposites and exploration of their antibacterial and antidiabetic potentials. J. Alloys Compd. 2020, 833, 155083. [Google Scholar] [CrossRef]
- Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6, 175–178. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yue, S.T.; Li, D.Q.; Jin, M.J.; Li, C.Z. Solvent extraction of scandium (III), yttrium (III), lanthanides (III) and divalent metal ion with sec-nonyl phenoxy acetic acid. Solvent Extr. Ion Exch. 2002, 20, 701–706. [Google Scholar] [CrossRef]
- Lakshminarasappa, B.N.; Shivaramu, N.J.; Nagabhushana, K.R.; Singh, F. Synthesis characterization and luminescence studies of 100 MeV Si8+ ion irradiated sol-gel derived nanocrystalline Y2O3. Nucl. Inst. Methods. Phys. Res. 2014, 329, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Nunes, D.; Pimentel, A.; Matias, M.; Freire, T.; Araújo, A.; Silva, F.; Gaspar, P.; Garcia, S.; Carvalho, P.A.; Fortunato, E.; et al. Tailoring upconversion and morphology of Yb/Eu doped Y2O3 nanostructures by acid composition mediation. Nanomaterials 2019, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.L.; Starostin, S.A.; Li, S.; Khan, S.A.; Hessel, V. Synthesis of yttrium oxide nanoparticles via a facile microplasma-assisted process. Chem. Eng. Sci. 2018, 178, 157–166. [Google Scholar] [CrossRef]
- Chen, S.; Lin, J.; Wu, J. Facile synthesis of Y2O3: Dy3+ nanorods and its application in dye-sensitized solar cells. Appl. Surf. Sci. 2014, 293, 202–206. [Google Scholar] [CrossRef]
- Zhai, Y.; Yao, Z.; Ding, S.; Qiu, M.; Zhai, J. Synthesis and characterization of Y2O3: Eu nanopowder via EDTA complexing sol-gel process. Mat. Lett. 2003, 57, 2901–2906. [Google Scholar]
- Rebeca, M.V.; Margarita, G.H.; Arturo, L.M.; Perla, Y.L.C.; Ángel, J.M.R.; Hiram, I.B.C. Sol-gel synthesis and antioxidant properties of yttrium oxide nanocrystallites incorporating P-123. Materials 2014, 7, 6768–6778. [Google Scholar]
- Mariano-Torres, J.A.; López-Marure, A.; García-Hernández, M.; Basurto-Islas, G.; Ángel Domínguez-Sánchez, M. Synthesis and characterization of glycerol citrate polymer and yttrium oxide nanoparticles as a potential antibacterial material. Mat. Transact. 2018, 59, 1915–1919. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Peng, J.; Srinivasakannan, C.; Yin, S.; Guo, S.; Zhang, L. Effect of temperature on the preparation of yttrium oxide in microwave field. J. Alloys. Compd. 2018, 742, 13–19. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Pandurangan, M.; Veerappan, M.; Kim, D.W.; Sreekanth, T.V.M.; Shim, J. Green synthesis, characterization and anticancer activity of yttrium oxide nanoparticles. Mat. Lett. 2018, 216, 58–62. [Google Scholar] [CrossRef]
- Lellouche, J.; Friedman, A.; Gedanken, A.; Banin, E. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int. J. Nanomed. 2012, 7, 5611–5624. [Google Scholar]
- Huang, Z.; Sun, X.; Xiu, Z.; Chen, S.; Tsai, C.T. Precipitation synthesis and sintering of yttria nanopowders. Mat. Lett. 2004, 58, 2137–2142. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, USA, 2003; Volume 53, p. 2616. [Google Scholar]
- Tomaszewski, H.; Weglarz, H.; DeGryse, R. Crystallization of yttria under hydrothermal conditions. J. Eur. Ceram. Soc. 1997, 17, 403–406. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, X.; Liu, M.; Lv, Y.; Hou, X. Controllable synthesis of Y2O3 microstructures for application in cataluminescence gas sensing. Chem. Eur. J. 2011, 17, 7105–7111. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Q.; Gao, Z.H. Synthesis of Y2O3 with nestlike structures. J. Mater. Sci. 2006, 41, 6126. [Google Scholar] [CrossRef]
- Li, N.; Yanagisawa, K. Controlling the morphology of yttrium oxide through different precursors synthesized by hydrothermal method. J. Solid. State. Chem. 2008, 181, 1738. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.Y.; Ma, Y.Z.; Yang, H.B.; Zhu, P.F.; Du, J.B.; Ji, C.; Hou, D.B. Ultrastable structure and luminescence properties of Y2O3 nanotubes. Solid. State. Commun. 2010, 150, 1208. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, Z.P.; Li, S.; Zhang, S.Y.; Liu, X.M.; Qian, Y.T. Synthesis of yttrium hydroxide and oxide nanotubes. J. Cryst. Growth 2003, 259, 208. [Google Scholar] [CrossRef]
- Li, Y.G.; Lin, X.Y.; Wang, Y.Z.; Luo, J.M.; Sun, W.L. Preparation, and characterization of porous yttrium oxide powders with high specific surface area. J. Rare Earths 2006, 24, 34. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Chen, J.-H.; Hsu, S.-H.; Chung, T.-W. Hydrothermal synthesis of lewis acid Y2O3 cubes and flowers for the removal of phospholipids from soybean oil. Cryst. Eng. Comm. 2013, 15, 6506. [Google Scholar] [CrossRef]
- Liu, J.C.; Wu, B.L. Effects of Eu2O3 addition on microstructure, grain-boundary cohesion and wear resistance of high-alumina ceramics. J. Alloy. Compd. 2014, 50, 49. [Google Scholar] [CrossRef]
- Kruk, A.; Wajler, A.; Mrozek, M.; Zych, L.; Gawlik, W.; Brylewski, T. Transparent yttrium oxide ceramics as potential optical isolator materials. Opt. Appl. 2015, 45, 585. [Google Scholar]
- Foo, Y.T.; Abdullah, A.Z.; Horri, B.A.; Salamatinia, B. Synthesis and characterization of Y2O3 using ammonia oxalate as a precipitant in distillate pack co-precipitation process. Ceram. Int. 2018, 44, 18693–18702. [Google Scholar] [CrossRef]
- Bhavani, G.; Ganesan, S. Structural, morphological and optical study of bismuth and zinc co-doped yttrium oxide prepared by solvothermal and wet chemical method. Acta. Phys. Pol. 2016, 130. [Google Scholar] [CrossRef]
- Su, T.M.; Qin, Z.Z.; Ji, H.B.; Jiang, Y.X. Preparation, characterization, and activity of Y2O3-ZnO complex oxides for the photodegradation of 2,4-dinitrophenol. Int. J. Photoenergy 2014, 794057. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Zhou, G.H.; An, L.; Zhang, F.; Zhang, G.J.; Wang, S.H. Morphology-controlled synthesis of yttrium hafnate by oxalate co-precipitation method and the growth mechanism. J. Alloy. Compd. 2009, 481, 434–437. [Google Scholar] [CrossRef]
- Kabir, M.; Ghahari, M.; Afarani, M.S. Co-precipitation synthesis of nano Y2O3:Eu3+ with different morphologies and its photoluminescence properties. Ceram. Int. 2014, 40, 10877–10885. [Google Scholar] [CrossRef]
- Srinivasan, R.; Yogamalar, R.; Chandra, B.A. Structural and optical studies of yttrium oxide nanoparticles synthesized by co-precipitation method. Mat. Res. Bull. 2010, 45, 1165–1170. [Google Scholar] [CrossRef]
- Wen, L.; Sun, X.; Lu, Q.; Xu, G.; Hu, X. Synthesis of yttria nanopowders for transparent yttria ceramics. Opt. Mat. 2006, 29, 239–245. [Google Scholar] [CrossRef]
- Giesche, H.; Matijevic, E. Preparation, characterization, and sinterability of well-defined silica/yttria powders. J. Mater. Res. 1994, 9, 436. [Google Scholar] [CrossRef]
- Sordelet, D.J.; Akinc, M.; Panchula, M.L.; Han, Y.; Han, M.H. Synthesis of yttrium aluminum garnet precursor powders by homogeneous precipitation. J. Eur. Ceram. Soc. 1994, 14, 123. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Guo, X.; Zhao, J.; Chen, H.; Yang, X. High quality thin film phosphors of Y2O3: Eu3+ deposited via chemical bath deposition. J. Rare Earths 2010, 28, 684–687. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhang, Y.M.; Hong, G.Y.; Yu, Y.N. Upconversion luminescence of Y2O3:Er3+, Yb3 + nanoparticles prepared by a homogeneous precipitation method. J. Rare. Earths 2008, 26, 450. [Google Scholar] [CrossRef]
- Bhagat, D.S.; Katariya, M.V.; Patil, C.S.; Deshmukh, S.U.; Shisodia, S.U.; Pandule, S.S.; Pawar, R.P. Yttrium oxide: A highly efficient catalyst for the synthesis of pyrano[2,3-d]pyrimidine derivatives in aqueous methanol media. Eur. Chem. Bull. 2015, 4, 450–453. [Google Scholar]
- Lin, C.; Zhang, C.; Lin, J. Sol–gel derived Y2O3 as an efficient bluish-white phosphor without metal activator ions. J. Lumin. 2009, 129, 1469–1474. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. U.S. Patent 3330697, 11 July 1967. [Google Scholar]
- Simoes, A.Z.; Ries, A.; Riccardi, C.S.; Gonzalez, A.H.; Zaghete, M.A.; Stojanovic, B.D.; Cilense, M.; Varela, J.A. Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors. Mater. Lett. 2004, 58, 2537–2540. [Google Scholar] [CrossRef]
- Zaki, T.; Kabel, K.I.; Hassan, H. Using modified Pechini method to synthesize a-Al2O3 nanoparticles of high surface area. Ceram. Int. 2012, 38, 4861–4866. [Google Scholar] [CrossRef]
- Tao, X.; Chen, X.; Xia, Y.; Huang, H.; Gan, Y.; Wu, R.; Chen, F.; Zhang, W. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Povolotskiy, A.V.; Mamonova, D.V.; Lahderanta, Z.; Manshinaa, A.A.; Mikhailov, M.D. Photoluminescence properties of Eu3+ ions in yttrium oxide nanoparticles: Defect vs. normal sites. RSC Adv. 2016, 6, 76533. [Google Scholar] [CrossRef]
- Guo, B.; Yim, H.; Hwang, W.; Nowell, M.; Luo, Z. Crystalline phase of Y2O3:Eu particles generated in a substrate-free flame process. Particuology 2011, 9, 24–31. [Google Scholar] [CrossRef]
- Strobel, R.; Pratsinis, S.E. Flame aerosol synthesis of smart nanostructured materials. J. Mat. Chem. 2007, 17, 4743–4756. [Google Scholar] [CrossRef]
- Kang, Y.C.; Seo, D.J.; Park, S.B.; Park, H.D. Morphological and optical characteristics of Y2O3: Eu phosphor particles prepared by flame spray pyrolysis. Jpn. J. Appl. Phys. 2001, 40, 4083–4086. [Google Scholar] [CrossRef]
- Cho, S.C.; Uhm, H.S.; Bang, C.U.; Lee, D.K.; Han, C.S. Production of nanocrystalline Y2O3: Eu powder by microwave plasma-torch and its characterization. Thin Solid Films 2009, 517, 4052–4055. [Google Scholar] [CrossRef]
- Kubrin, R.; Bauhofer, W. Influence of polymeric additives on morphology and performance of Y2O3:Eu phosphor synthesized by flame-assisted spray pyrolysis. J. Lumin. 2009, 129, 1060–1066. [Google Scholar] [CrossRef]
- Dosev, D.; Guo, B.; Kennedy, I.M. Photoluminescence of Eu3+:Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis. J. Aerosol Sci. 2006, 37, 402–412. [Google Scholar] [CrossRef]
- Seo, D.J.; Kang, Y.C.; Park, S.B. The synthesis of (Y1−xGdx)2O3:Eu phosphor particles by flame spray pyrolysis with LiCl flux. Appl. Phys. A 2003, 77, 659–663. [Google Scholar] [CrossRef]
- Huo, D.; Sun, X.D.; Xiu, Z.M.; Li, X.D. Influence of processing conditions on morphologies and sinterability of ultrafine Y2O3 powders. J. Chin. Soc. Rare Earths 2007, 25, 566. [Google Scholar]
- Hong, G.Y. Syntheses and assemblies of rare earth nanomaterials. J. Chin. Soc. Rare Earths 2006, 24, 641. [Google Scholar]
- Chen, J.; Peng, R.; Chen, X. Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved. Front. Mater. Sci. 2017, 11, 197–214. [Google Scholar] [CrossRef]
- Saratal, G.D.; Kim, H.Y.; Saratalec, R.G.; Kim, D.S. Liquid–liquid extraction of yttrium from the sulfate leach liquor of waste fluorescent lamp powder: Process parameters and analysis. Miner. Eng. 2020, 152, 106341. [Google Scholar] [CrossRef]
- Saratale, R.G.; Kim, H.Y.; Park, Y.; Shin, H.S.; Ghodake, G.; Bharagava, R.N.; Mulla, S.I.; Kim, D.S.; Saratale, G.D. Hydrometallurgical process for the recovery of yttrium from spent fluorescent lamp: Leaching and crystallization experiments. J. Clean. Prod. 2020, 261, 121009. [Google Scholar] [CrossRef]
- Basavegowda, N.; Mishra, K.; Thombal, R.S.; Kaliraj, K.; Lee, Y.R. Sonochemical green synthesis of yttrium oxide (Y2O3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1,3. Catal. Lett. 2017, 147, 2630–2639. [Google Scholar] [CrossRef]
- Saratale, R.G.; Karuppusamy, I.; Saratale, G.D.; Pugazhendhi, A.; Kumar, G.; Park, Y.; Ghodake, G.S.; Bharagava, R.N.; Banu, J.R.; Shin, H.S. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf. B Biointerfaces 2018, 170, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Saratale, R.G.; Ghodake, G.S.; Shinde, S.K.; Cho, S.K.; Saratale, G.D.; Pugazhendhi, A.; Bharagava, R.N. Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of Reactive Green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer). J. Environ. Manag. 2018, 223, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Ghodake, G.S.; Jiang, Y.Y.; Kim, D.S.; Saratale, G.D. Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells. Environ. Sci. Pollut. Res. Int. 2018, 25, 10250–10263. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, J.R.; Ramakrishna, S. Nanotechnology: 21st-century revolution in restorative healthcare. Nanomedicine 2016, 11, 1511–1513. [Google Scholar] [CrossRef]
- Jha, R.K.; Jha, P.K.; Chaudhury, K.; Rana, S.V.; Guha, S.K. An emerging interface between life science and nanotechnology: Present status and prospects of reproductive healthcare aided by nano-biotechnology. Nano Rev. 2014, 5, 22762. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, O.; Komatsu, M.; Sawai, J.; Nakagawa, Z. Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci. Mater. Med. 2004, 15, 847–851. [Google Scholar] [CrossRef]
- Ischenko, V.; Polarz, A.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 2005, 15, 1945. [Google Scholar] [CrossRef] [Green Version]
- Slate, A.J.; Shalamanova, L.; Akhidime, I.D.; Whitehead, K.A. Rhenium and yttrium ions as antimicrobial agents against multidrug-resistant Klebsiella pneumoniae and Acinetobacter baumannii biofilms. Lett. Appl. Microbiol. 2019, 69, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, H.; Xue, X. Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium. Vacuum 2014, 107, 28–32. [Google Scholar] [CrossRef]
- Asiry, M.A.; Alshahrani, I.; Alqahtani, N.D.; Durgesh, B.H. Efficacy of yttrium (iii) fluoride nanoparticles in orthodontic bonding. J. Nanosci. Nanotechnol. 2019, 19, 1105–1110. [Google Scholar] [CrossRef]
- de Soet, J.J.; de Graaff, J. Microbiology of carious lesions. Dent. Update 1998, 25, 319. [Google Scholar]
- Arsiyaa, F.; Sayadia, M.H.; Sobhani, S. Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater. Lett. 2017, 186, 113–115. [Google Scholar] [CrossRef]
- Hosseini, A.; Baeeri, M.; Rahimifard, M.; Navaei-Nigjeh, M.; Mohammadirad, A.; Pourkhalili, N.; Hassani, S.; Kamali, M. Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum. Exp. Toxicol. 2013, 32, 544. [Google Scholar] [CrossRef]
- Perez, J.M.; Asati, A.; Nath, S.; Kaittanis, C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 2008, 4, 552–556. [Google Scholar] [CrossRef]
- Sayour, H.; Kassem, S.; Canfarotta, F.; Czulak, J.; Mohamed, M.; Piletsky, S. Biocompatibility and biodistribution of surface-modified yttrium oxide nanoparticles for potential theranostic applications. Environ. Sci. Pollut. Res. Int. 2020, 16, 19095–19107. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, B.; Huang, Z.; Liu, Y.; Liu, M.; Liu, J. Yttrium oxide as a strongly adsorbing but nonquenching surface for DNA oligonucleotides. Langmuir 2020, 36, 1034–1042. [Google Scholar] [CrossRef]
- Song, X.; Shang, P.; Sun, Z.; Lu, M.; You, G.; Yan, S.; Chen, G.; Zhou, H. Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine 2019, 14, 2519–2533. [Google Scholar] [CrossRef]
- Martin, P.; Leibovich, S.J. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends. Cell. Biol. 2005, 15, 599–607. [Google Scholar] [CrossRef]
- Memisogullari, R.; Taysi, S.; Bakan, E. Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell. Biochem. Funct. 2003, 21, 291. [Google Scholar] [CrossRef]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24. [Google Scholar] [CrossRef]
- Douki, T.; Cadet, J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic. Res. 1996, 24, 369. [Google Scholar] [CrossRef]
- Mohammad, G.; Mishra, V.K.; Pandey, H.P. Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Digest J. Nanomater. Biostruct. 2008, 3, 159–162. [Google Scholar]
- Warheit, D.B. Nanoparticles: Health impacts? Mater. Today 2004, 72, 32–35. [Google Scholar] [CrossRef]
- Aglan, H.A.; Mabrouk, M.; Aly, R.M.; Beherei, H.H.; Ahmed, H.H. Harnessing the antioxidant property of cerium and yttrium oxide nanoparticles to enhance mesenchymal stem cell proliferation. Asian J. Pharmaceut. Clin. Res. 2018, 11, 436–442. [Google Scholar] [CrossRef]
- Gier, B.; Krippeit-Drews, P.; Sheiko, T.; Aguilar-Bryan, L.; Bryan, J.; Dufer, M. Suppression of KATP channel activity protects murine pancreatic beta cells against oxidative stress. J. Clin. Investig. 2009, 119, 3246–3256. [Google Scholar]
- Schubert, D.; Dargusch, R.; Raitano, J.; Chan, S.-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 2006, 342, 86–91. [Google Scholar] [CrossRef]
- Jia, G.; You, H.Y.; Huang, Y.; Yang, M.; Zhang, H. Facile synthesis and luminescence of uniform Y2O3 hollow spheres by a sacrificial template route. Inorg. Chem. 2010, 49, 7721–7725. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.L.S. Nano-based drug delivery systems: Recent developments and future prospects. J. Nanobiotech. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- D’amato, G. Urban air pollution and plant-derived respiratory allergy. Clin. Exp. Allergy 2000, 30, 628–636. [Google Scholar]
- Soto, K.F.; Carrasco, A.; Powell, T.G.; Garza, K.M.; Murr, L.E. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J. Nanopart. Res. 2015, 7, 145–169. [Google Scholar] [CrossRef]
- Becker, S.; Soukup, J.M.; Gallagher, J.E. Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes, and alveolar macrophages. Toxicol. In Vitro 2002, 16, 209–218. [Google Scholar] [CrossRef]
- Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 2001, 30, 433–446. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, L.; Wang, Q.; Tao, Y.; Yang, H. Effect of Eu, Tb codoping on the luminescent properties of Y2O3 nanorods. J. Lumin. 2011, 131, 12–16. [Google Scholar] [CrossRef]
- Vu, N.; Anh, T.K.; Yi, G.C.; Strek, W. Photoluminescence and cathodoluminescence properties of Y2O3: Eu nanophosphors prepared by combustion synthesis. J. Lumin. 2007, 122, 776–779. [Google Scholar] [CrossRef]
- Leskela, M.; Ritala, M. Rare-earth oxide thin films as gate oxides in MOSFET transistors. J. Solid State Chem. 2003, 171, 170–174. [Google Scholar] [CrossRef]
- Ohta, A.; Yamaoka, M.; Miyazaki, S. Photoelectron spectroscopy of ultrathin yttrium oxide films on Si(100). Microelectron. Eng. 2014, 72, 154–159. [Google Scholar] [CrossRef]
- de Rouffignac, P.; Park, J.-S.; Gordon, R.G. Atomic layer deposition of Y2O3 thin films from yttrium tris(N,N’-diisopropylacetamidinate) and water. Chem. Mater. 2005, 17, 4808–4814. [Google Scholar] [CrossRef]
- Rao, T.N.; Hussain, I.; Lee, J.E.; Kumar, A.; Koo, B.H. Enhanced thermal properties of zirconia nanoparticles and chitosan-based intumescent flame retardant coatings. Appl. Sci. 2019, 9, 3464. [Google Scholar] [CrossRef] [Green Version]
- Ukare, R.S.; Kurzekar, R.R.; Zade, G.D.; Dhoble, S.J. Yttrium oxide as an engineering material. Int. J. Curr. Eng. Sci. Res. 2018, 5, 173–181. [Google Scholar]
- den Engelsen, D.; Terry, G.I.; Harris, P.G.; Reip, F.; Silver, J. Photoluminescence, cathodoluminescence and micro-Raman investigations of monoclinic nanometre-sized Y2O3 and Y2O3:Eu3+. Mater. Chem. C 2016, 4, 8930–8938. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Pramanik, P.; Singha, A.; Roy, A. Optical properties of nanocrystalline. J. Appl. Phys. 2005, 97, 094312. [Google Scholar] [CrossRef] [Green Version]
- Packiyaraj, P.; Thangadurai, P. Structural and photoluminescence studies of Eu3+ doped cubic Y2O3 nanophosphors. J. Lumin. 2014, 145, 997–1003. [Google Scholar] [CrossRef]
- Dhanaraj, J.; Jagannathan, R.; Kutty, T.R.N.; Lu, C.H. Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol−gel thermolysis. J. Phys. Chem. B 2001, 105, 11098. [Google Scholar] [CrossRef]
- Ali, A.G.; Dejene, B.F.; Swart, H.C. Synthesis and characterization of Y2O3:Eu3+ phosphors using the Sol-Combustion method. Phys. B. 2014, 439, 181–184. [Google Scholar] [CrossRef]
- Jin, Z.W.; Yoo, Y.Z.; Sekiguchi, T.; Chikyow, T.; Ofuchi, H.; Fujioka, H.; Oshima, M.; Koinuma, H. Blue and ultraviolet cathodoluminescence from Mn-doped epitaxial ZnO thin films. Appl. Phys. Lett. 2003, 83, 39. [Google Scholar] [CrossRef]
- Emeline, A.; Kataeva, G.V.; Litke, A.S.; Rudakova, A.V.; Ryabchuk, V.K.; Serpone, N. Spectroscopic and photoluminescence studies of a wide band gap insulating material: Powdered and colloidal ZrO2 Sols. Langmuir 1998, 14, 5011. [Google Scholar] [CrossRef]
- Green, W.H.; Le, K.P.; Grey, J.; Au, T.T.; Sailor, M. High-temperature photoluminescence in sol-gel silica-containing SiC/C nanostructures. J. Sci. 1997, 276, 1826. [Google Scholar]
- Hayakawa, T.; Hiramitsu, A.; Nogami, M. White light emission from radical carbonyl-terminations in Al2O3–SiO2 porous glasses with high luminescence quantum efficiencies. Appl. Phys. Lett. 2003, 82, 2975. [Google Scholar] [CrossRef]
- Niioka, T.; Furukawa, M.; Ichimiya, M.; Ashida, T.; Araki, M. Hashimoto. Multicolor cathodoluminescence microscopy for biological imaging with nanophosphors. Nanopart. Sci. Rep. 2016, 6, 25950. [Google Scholar]
- Adam, J.; Metzger, W.; Koch, M.; Rogin, P.; Coenen, T.; Atchison, J.S.; König, P. Light emission intensities of luminescent Y₂O₃:Eu and Gd₂O₃:Eu particles of various sizes. Nanomaterials 2017, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Bordun, O.M.; Bordun, I.O.; Yo, I. Luminescence centers in yttrium silicate and germinate. J. Appl. Spectrosc. 2017, 84, 246–254. [Google Scholar]
- Gu, G.; Ong, P.P.; Chen, C.; Roth, S. Synthesis and characterization of Y2O3:Eu3+ thin films on silicon substrate by pulsed laser ablation. J. Phys. D Appl. Phys. 2000, 33, 1263–1266. [Google Scholar] [CrossRef]
- Paulraj, A.; Natrajan, P.; Munnisamy, K.; Nagoor, M.K.; Nattar, K.P.; Abdlrajak, B. Photoluminescence efficiencies of nanocrystalline versus bulk Y2O3: Eu phosphor—Revisited. J. Am. Ceram. Soc. 2010, 95, 1627–1633. [Google Scholar] [CrossRef]
- Soga, K.; Tsuji, T.; Tashiro, F.; Chiba, J.; Oishi, M.; Yoshimoto, K.; Nagasaki, Y.; Kitano, K.; Hamaguchi, S. Development of NIR bioimaging systems. J. Phys. 2008, 106, 012023. [Google Scholar] [CrossRef] [Green Version]
- Zako, T.; Hyodo, H.; Tisuji, K.; Tokuzen, K.; Kaneko, H.; Maedo, M. Yttrium oxide as an engineering materia. J. Nanomater. 2010, 7, 491471. [Google Scholar]
- Giri, N.K.; Mishra, K.; Rai, B. Upconversion-based tunable white-light generation in Ln:Y(2)O(3) nanocrystalline phosphor (Ln = Tm/Er/Yb). J. Fluoresc. 2011, 21, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.N.; Robert, C.D.; John, B.G.; Dhiraj, K.S. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009, 105, 33102–33106. [Google Scholar]
- Fosshein, K.; Sudho, A. Superconductivity: Physics and Applications; John Wiley & Son’s Ltd.: Hoboken, NJ, USA, 2004; ISBN 0-470-84452-3. [Google Scholar]
- Venkatachalam, N.; Yamano, T.; Hemmer, E.; Hyodo, H.; Kishimoto, H.; Soga, K. Er3+-Doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications. J. Am. Ceram. Soc. 2013, 96, 2759–2765. [Google Scholar] [CrossRef]
- Soga, K.; Tokuzen, K.; Tsuji, K.; Yamano, T.; Hyodo, H.; Kishimoto, H. NIR Bioimaging: Development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes. Eur. J. Inorg. Chem. 2010, 2020, 2673–2677. [Google Scholar] [CrossRef]
# | Method | Application | Precursor | Ref. |
---|---|---|---|---|
1 | Synthesis of up-converting nanoparticles acid composition method | To improve infrared light conversion to visible light in optoelectronic devices | Yttrium and europium oxides with acetic acid are +HNO3 + HCl using hydrothermal microwave irradiation | [32] |
2 | Microplasma-assisted method | Used in optical emission, emission spectroscopic studies, plasma kinetic analysis | Yttrium nitrate with water medium | [33] |
3 | Hydrothermal method | Improves the efficiency of light to electric transformation by converting UV light to visible light. One half of Y2O3 enhances open circuit voltage | TiO2 on dye-sensitized solar cells | [34] |
4 | Hydrothermal method (synthesis of nanorod) | Enhance infrared light harvest and increase photocurrent or dye-sensitized solar cells (DSSC) | ½ Y2O3: Er3 | [30] |
5 | Sol-gel process | Ethylene tetraacetic acid (EDTA) complexing sol-gel process particle is fine and requires no further grinding | Metal nitrate and EDTA | [35] |
Antioxidant property used in a biological system | Yttrium nitrate yttrium chlorate in methanol with P-123 poloxamer | [36] | ||
i. Auto catalytic-polymerization ii. Sol-gel method: Adjusting of electrochemical criteria iii. Cytotoxicity effect through human neuroblastoma cell. | i. Hexahydrate yttrium chlorite ii. Yttrium hydroxide iii. Yttrium chloride (YCl3·6H2O) | [37] | ||
6 | i. Cathodic electrodeposition method ii. Thermal decomposition | i. Crystalline size (40–60) nm ii. Thermal decomposition particle size 30 nm | Yttrium hydroxide | [8] |
7 | Citrate precipitate on the method (Surfactant PEG 2000) using azeotropic distillation | Torispherical and uniform-sized Particle with a developed structure | Yttrium chlorate (YCL3) | [9] |
8 | Biosynthesis from Acalypha indica leaf extract size (23 μm to 66 nm) | Increasing the rate of antibacterial behavior | Yttrium nitrate hexahydrate + A. indica leaf | [17] |
9 | Yttrium oxide in the microwave field | Yttrium oxalate hydrate | Narrow particle size distribution, used for industrial processing | [38] |
10 | Green method synthesis | Efficient anticancer activity against renal cancer | Plant-based | [39] |
11 | Sono-chemical irradiation method | Antimicrobial, anti-biofilm production | Yttrium III acetate tetrahydrate | [40] |
12 | Chemical precipitation method | Transparent ceramic | Carbonate yttrium + nitric acid | [41] |
# | Precursors | Medium | Temperature | Obtained | Ref. |
---|---|---|---|---|---|
1 | Yttrium salts, ammonia, water | Chloride, nitrate | (200–270) °C ((0–120) min) | Yttrium grains | [43] |
2 | Y(NO3)3⋅6H2O (3.83 g), and urea (0.5 g) | water | 140 °C for 12 h | Y(OH)CO3 | [44] |
3 | Y(NO3)3 6H2O, Glycine, water, | NH3.H2O | 170 °C for 5 days | Y(OH)3 nest-like | [45] |
4 | Y2O3, nitric acid | ammonia (or) NaOH | (80–220) °C for 24 h | Hexagonal Y(OH)3, | [46] |
5 | Pure Y2O3 was dissolved in an HNO3 solution | NaOH solution | 110 °C for 72 h | Y2O3 nanotubes (NTs) | [47] |
6 | Pure Y2O3, | NaOH solution | 150 °C for 12 h | Hexagonal Y(OH)3 with nanotube and microrod morphologies | [13] |
7 | Y(NO3)3⋅8H2O, 0.5 g PEG-6000 and 20 mL water | NaOH | 60 °C for 4 h | Y(OH)3 and Y2O3 nanotubes | [48] |
8 | hydrate yttrium nitrate and methyl salicylate | ethyl acetate | 80 °C for 120 min | Porous cubic yttrium oxides | [49] |
# | Precursors | Medium | Methods | Ref. |
---|---|---|---|---|
1 | Yttrium, europium, chloride salts, HCL | Ammonia | Co-precipitation | [57] |
2 | Yttrium nitrate, hafnium (IV) chloride, diammonium oxalate monohydrate, polyethylene glycol 6000 | Water | Co-precipitation | [56] |
3 | Yttrium nitrate hexahydrate, Na2CO3, KOH, and NaOH | Water | Co-precipitation | [58] |
4 | Yttrium nitrate, nitric acid, ammonia and ammonium, hydro-carbonate | Water, alcohol | Precipitation | [41] |
5 | Yttria powder, nitric acid, ammonia sulfate | Ammonia water | Precipitation | [59] |
6 | yttrium nitrate and urea | Water | Precipitation | [60] |
7 | Yttria, nitric acid, aluminum nitrate, urea | Water | Precipitation | [61] |
8 | Y2O3 (95 mol.%) and Eu2O3 (5 mol.%) were dissolved in HNO3, | Water | Precipitation | [62] |
9 | Y2O3 (95 mol.%) and Eu2O3 (5 mol.%) were dissolved in AcOH | Ethylene glycol (EG), | Precipitation | [62] |
10 | Y (NO3)3 (77 mL), Yb(NO3)3 (20 mL), Er(NO3)3 | EDTA | Precipitation | [63] |
11 | (Y(NO)3⋅6H2O), Na2CO3, KOH and NaOH | Ammonium hydroxide | Co-precipitation | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajakumar, G.; Mao, L.; Bao, T.; Wen, W.; Wang, S.; Gomathi, T.; Gnanasundaram, N.; Rebezov, M.; Shariati, M.A.; Chung, I.-M.; et al. Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications. Appl. Sci. 2021, 11, 2172. https://doi.org/10.3390/app11052172
Rajakumar G, Mao L, Bao T, Wen W, Wang S, Gomathi T, Gnanasundaram N, Rebezov M, Shariati MA, Chung I-M, et al. Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications. Applied Sciences. 2021; 11(5):2172. https://doi.org/10.3390/app11052172
Chicago/Turabian StyleRajakumar, Govindasamy, Lebao Mao, Ting Bao, Wei Wen, Shengfu Wang, Thandapani Gomathi, Nirmala Gnanasundaram, Maksim Rebezov, Mohammad Ali Shariati, Ill-Min Chung, and et al. 2021. "Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications" Applied Sciences 11, no. 5: 2172. https://doi.org/10.3390/app11052172
APA StyleRajakumar, G., Mao, L., Bao, T., Wen, W., Wang, S., Gomathi, T., Gnanasundaram, N., Rebezov, M., Shariati, M. A., Chung, I.-M., Thiruvengadam, M., & Zhang, X. (2021). Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications. Applied Sciences, 11(5), 2172. https://doi.org/10.3390/app11052172