Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Architectures’ Design
2.2. Composite Panels Manufacturing
3. Experiment and Characterisation
3.1. Optical Microscopy
3.2. Impact Testing
3.3. Nondestructive Testing of the Impact-Induced Damage
3.3.1. Ultrasonic C-Scanning
3.3.2. Digital Image Correlation (DIC)
3.3.3. X-ray Computed Tomography (CT)
4. Results and Discussion
4.1. Optical Microscopy
4.2. Impact Testing
4.2.1. Impact Force–Displacement Analysis
4.2.2. Damage Characterisation
4.2.3. X-ray CT Failure Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panettieri, E.; Fanteria, D.; Montemurro, M.; Froustey, C. Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study. Compos. Part B Eng. 2016, 107, 9–21. [Google Scholar] [CrossRef]
- Awais, H.; Nawab, Y.; Anjang, A.; Md Akil, H.; Zainol Abidin, M.S. Effect of fabric architecture on the shear and impact properties of natural fibre reinforced composites. Compos. Part B Eng. 2020, 195, 108069. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Ying, Z.; Ke, J.; Hu, X. Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation. Compos. Part B Eng. 2020, 196, 108098. [Google Scholar] [CrossRef]
- Xin, W.; Sarasini, F.; Tirillò, J.; Bavasso, I.; Sbardella, F.; Lampani, L.; De Rosa, I.M. Impact and post-impact properties of multiscale carbon fiber composites interleaved with carbon nanotube sheets. Compos. Part B Eng. 2020, 183. [Google Scholar] [CrossRef]
- Bilisik, K.; Sapanci, E. Experimental determination of fracture toughness properties of nanostitched and nanoprepreg carbon/epoxy composites. Eng. Fract. Mech. 2018, 189, 293–306. [Google Scholar] [CrossRef]
- Shyr, T.-W.; Pan, Y.-H. Impact resistance and damage characteristics of composite laminates. Compos. Struct. 2003, 62, 193–203. [Google Scholar] [CrossRef]
- Francesconi, L.; Aymerich, F. Impact damage resistance of thin stitched carbon/epoxy laminates. Proc. J. Phys. Conf. Ser. 2015, 628, 12099. [Google Scholar] [CrossRef]
- Hosur, M.V.; Adya, M.; Alexander, J.; Jeelani, S.; Vaidya, U.; Mayer, A. Studies on impact damage resistance of affordable stitched woven carbon/epoxy composite laminates. J. Reinf. Plast. Compos. 2003, 22, 927–952. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. Effect of stitch density and stitch thread thickness on low-velocity impact damage of stitched composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1857–1868. [Google Scholar] [CrossRef]
- Yoshimura, A.; Nakao, T.; Yashiro, S.; Takeda, N. Improvement on out-of-plane impact resistance of CFRP laminates due to through-the-thickness stitching. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1370–1379. [Google Scholar] [CrossRef]
- Chen, F.; Hodgkinson, J.M. Impact behaviour of composites with different fibre architecture. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2009, 223, 1009–1017. [Google Scholar] [CrossRef]
- Umer, R.; Alhussein, H.; Zhou, J.; Cantwell, W. The mechanical properties of 3D woven composites. J. Compos. Mater. 2016. [Google Scholar] [CrossRef]
- Seltzer, R.; González, C.; Muñoz, R.; Llorca, J.; Blanco-Varela, T. X-ray microtomography analysis of the damage micromechanisms in 3D woven composites under low-velocity impact. Compos. Part A Appl. Sci. Manuf. 2013, 45, 49–60. [Google Scholar] [CrossRef]
- Hart, K.R.; Chia, P.X.L.; Sheridan, L.E.; Wetzel, E.D.; Sottos, N.R.; White, S.R. Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2017, 101, 432–443. [Google Scholar] [CrossRef]
- Kazemianfar, B.; Esmaeeli, M.; Nami, M.R. Experimental investigation on response and failure modes of 2D and 3D woven composites under low velocity impact. J. Mater. Sci. 2020, 55, 1069–1091. [Google Scholar] [CrossRef]
- Miao, H.; Wu, Z.; Ying, Z.; Hu, X. The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture. Compos. Struct. 2019, 227, 111343. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, J.; Sun, B.; Gu, B. X-ray tomography and numerical study on low-velocity impact damages of three-dimensional angle-interlock woven composites. Compos. Struct. 2019, 230, 111525. [Google Scholar] [CrossRef]
- Gil, L.; Oller, S.; Pérez Martínez, M.A. Non-destructive testing evaluation of low velocity impact damage in carbon fiber-reinforced laminated composites. Ultrasound 2011, 66, 21–27. [Google Scholar]
- Grondel, S.; Assaad, J.; Delebarre, C.; Moulin, E. Health monitoring of a composite wingbox structure. Ultrasonics 2004, 42, 819–824. [Google Scholar] [CrossRef]
- Savin, A.; Barsanescu, P.D.; Vizureanu, P.; Stanciu, M.D.; Curtu, I.; Iftimie, N.; Steigmann, R. Damage detection of carbon reinforced composites using nondestructive evaluation with ultrasound and electromagnetic methods. In IOP Conference Series: Materials Science and Engineering, Proceedings of the International Conference on Innovative Research—ICIR Euroinvent 2016, Iași, Romania, 19–20 May 2016; IOP: Bristol, UK, 2016; p. 12013. [Google Scholar]
- Saeedifar, M.; Saleh, M.N.; El-dessouky, H.M.; Freitas, D. Damage assessment of NCF, 2D and 3D woven composites under compression after multiple-impact using acoustic emission. Compos. Part A Appl. Sci. Manuf. 2020, 132. [Google Scholar] [CrossRef]
- Li, Z.; Haigh, A.D.; Nasr Saleh, M.; McCarthy, E.D.; Soutis, C.; Gibson, A.A.P.; Sloan, R. Detection of impact damage in carbon-fibre composites using an electromagnetic sensor. Res. Nondestruct. Eval. 2017, 29, 1–20. [Google Scholar] [CrossRef]
- Sencu, R.M.; Yang, Z.; Wang, Y.C.; Withers, P.J.; Rau, C.; Parson, A.; Soutis, C. Generation of micro-scale finite element models from synchrotron X-ray CT images for multidirectional carbon fibre reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016, 91, 85–95. [Google Scholar] [CrossRef]
- Emerson, M.J.; Jespersen, K.M.; Dahl, A.B.; Conradsen, K.; Mikkelsen, L.P. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials. Compos. Part A Appl. Sci. Manuf. 2017, 97, 83–92. [Google Scholar] [CrossRef]
- Mahadik, Y.; Brown, K.A.R.; Hallett, S.R. Characterisation of 3D woven composite internal architecture and effect of compaction. Compos. Part A Appl. Sci. Manuf. 2010, 41, 872–880. [Google Scholar] [CrossRef]
- Khosravani, M.R. Influences of defects on the performance of adhesively bonded sandwich joints. Key Eng. Mater. 2018, 789, 45–50. [Google Scholar] [CrossRef]
- ASTM D7136/D7136M-15 Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event 2011; American Society for Testing and Materials: West Conshohocken, PA, USA, 2011; pp. 1–16.
- Saleh, M.N.; El-Dessouky, H.M.; Saeedifar, M.; De Freitas, S.T.; Scaife, R.J.; Zarouchas, D. Compression after multiple low velocity impacts of NCF, 2D and 3D woven composites. Compos. Part A Appl. Sci. Manuf. 2019, 125. [Google Scholar] [CrossRef]
- Mubeen, A. Damage Tolerance of 3D Woven Composites with Weft Binders. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2014. [Google Scholar]
- Saleh, M.N.; Yudhanto, A.; Potluri, P.; Lubineau, G.; Soutis, C. Characterising the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture. Compos. Part A Appl. Sci. Manuf. 2016, 90, 577–588. [Google Scholar] [CrossRef]
- Saleh, M.N.; Soutis, C. Recent advancements in mechanical characterisation of 3D woven composites. Mech. Adv. Mater. Mod. Process. 2017, 3. [Google Scholar] [CrossRef]
- Saleh, M.N.; Wang, Y.; Yudhanto, A.; Joesbury, A.; Potluri, P.; Lubineau, G.; Soutis, C. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints’ Applications. Appl. Compos. Mater. 2016, 24, 377–396. [Google Scholar] [CrossRef]
- Ivanov, D.S.; Lomov, S.V.; Bogdanovich, A.E.; Karahan, M.; Verpoest, I. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1144–1157. [Google Scholar] [CrossRef]
- Midani, M.; Seyam, A.-F.; Saleh, M.N.; Pankow, M. The effect of the through-thickness yarn component on the in-and out-of-plane properties of composites from 3D orthogonal woven preforms. J. Text. Inst. 2018. [Google Scholar] [CrossRef]
- El-Dessouky, H.M.; Saleh, M.N. Chapter 4: 3D Woven Composites: From Weaving to Manufacturing. In Recent Developments in the Field of Carbon Fibers; IntechOpen: London, UK, 2018; pp. 51–66. [Google Scholar]
- Shah, S.Z.H.; Karuppanan, S.; Megat-Yusoff, P.S.M.; Sajid, Z. Impact resistance and damage tolerance of fiber reinforced composites: A Review. Compos. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Defects and damage and their role in the failure of polymer composites. In Failure Analysis and Fractography of Polymer Composites; Woodhead Publishing: Cambridge, UK, 2009; pp. 356–440.
C-Scan Area (%) | Absorbed Energy (J) | DD Parameter (J/J) | EDA/A (J/cm2) | |
---|---|---|---|---|
NCF | 1.81 ± 0.29 | 14.38 ± 0.31 | 0.96 ± 0.02 | 5.30 ± 0.11 |
2D-PW | 1.05 ± 0.12 | 13.34 ± 0.12 | 0.89 ± 0.01 | 8.47 ± 0.08 |
ORT-PW | 0.66 ± 0.08 | 12.23 ± 0.59 | 0.82 ± 0.04 | 12.35 ± 0.60 |
ORT-TW | 1.02 ± 0.03 | 12.81 ± 0.93 | 0.85 ± 0.06 | 8.37 ± 0.61 |
Volume of Segmented Damage (mm3) | Composite Panel Thickness (mm) | Scanned Area Width × Height (mm × mm) | Damage Volume Fraction (%) | |
---|---|---|---|---|
NCF | 42.02 | 2.63 | 18.97 × 22.16 | 3.80 |
2D-PW | 17.78 | 2.48 | 18.97 × 22.16 | 1.71 |
ORT-PW | 0.62 | 2.48 | 18.97 × 22.16 | 0.06 |
ORT-TW | 13.97 | 2.64 | 18.97 × 22.16 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Dessouky, H.M.; Saleh, M.N.; Wang, Y.; Alotaibi, M.S. Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites. Appl. Sci. 2021, 11, 2364. https://doi.org/10.3390/app11052364
El-Dessouky HM, Saleh MN, Wang Y, Alotaibi MS. Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites. Applied Sciences. 2021; 11(5):2364. https://doi.org/10.3390/app11052364
Chicago/Turabian StyleEl-Dessouky, Hassan M., Mohamed Nasr Saleh, Ying Wang, and Mohamed S. Alotaibi. 2021. "Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites" Applied Sciences 11, no. 5: 2364. https://doi.org/10.3390/app11052364
APA StyleEl-Dessouky, H. M., Saleh, M. N., Wang, Y., & Alotaibi, M. S. (2021). Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites. Applied Sciences, 11(5), 2364. https://doi.org/10.3390/app11052364