Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Methylene Blue Photosensitizer Preparations
2.2. Cytotoxicity Assays
2.3. Intrinsic (Dark) Cytotoxicity Assay of Methylene Blue
2.4. Photodynamic Action Test of Methylene Blue
2.5. Statistical Analysis
2.6. Z’factor Index
3. Results
3.1. Cell Density for the MTT Reduction Assay in PDT
3.2. Viability Evaluation by the MTT Reduction Method
3.3. The Sensitivity of the Assay
3.4. Interference of Methylene Blue with the MTT Assay
3.5. Viability Assay and Data Normalization
4. Discussion
Viability Assay and Data Normalization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fadel, M.; Salah, M.; Samy, N.; Mona, S. Liposomal methylene blue hydrogel for selective photodynamic therapy of acne vulgaris. J. Drugs Dermatol. 2009, 8, 98390. [Google Scholar]
- Baldea, I.; Filip, A.G. Photodynamic therapy in melanoma—An update. J. Physiol. Pharmacol. 2012, 63, 109–118. [Google Scholar] [PubMed]
- Salah, M.; Samy, N.; Fadel, M. Methylene blue mediated photodynamic therapy for resistant plaque psoriasis. J. Drugs Dermatol. 2009, 8, 42–49. [Google Scholar] [PubMed]
- Samy, N.A.; Salah, M.M.; Ali, M.F.; Sadek, A.M. Effect of methylene blue-mediated photodynamic therapy for treatment of basal cell carcinoma. Lasers Med. Sci. 2014, 30, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, K.; Ikeda, N. PDT for lung cancer. In Handbook of Photodynamic Therapy: Updates on Recent Applications of Porphyrin-Based Compounds; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2016; pp. 485–500. ISBN 9789814719650. [Google Scholar]
- Inoue, K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int. J. Urol. 2017, 24, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ann Kruger, C.; Abrahamse, H. Targeted Photodynamic Therapy as Potential Treatment Modality for the Eradication of Colon Cancer. In Multidisciplinary Colorectal Cancer [Working Title]; IntechOpen: London, UK, 2019. [Google Scholar]
- Gheewala, T.; Skwor, T.; Munirathinam, G. Photosensitizers in prostate cancer therapy. Oncotarget 2017, 8, 30524–30538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.H.; Choi, M.G.; Hasan, T. Application of photodynamic therapy in gastrointestinal disorders: An outdated or re-emerging technique? Korean J. Intern. Med. 2017, 32, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Bown, S.G. Photodynamic therapy for cancer of the pancreas-The story so far. Photonics Lasers Med. 2016, 5, 91–100. [Google Scholar] [CrossRef]
- Banerjee, S.M.; MacRobert, A.J.; Mosse, C.A.; Periera, B.; Bown, S.G.; Keshtgar, M.R.S. Photodynamic therapy: Inception to application in breast cancer. Breast 2017, 31, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in Photodynamic Therapy: Part Three—Photosensitizer Pharmacokinetics, Biodistribution, Tumor Localization and Modes of Tumor Destruction. Photodiagnosis Photodyn. Ther. 2005, 2, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.R.; Huang, Y.-Y. Handbook of Photomedicine; CRC Press: Boca Raton, FL, USA, 2013; p. 886. [Google Scholar]
- Allison, R.R.; Moghissi, K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013, 46, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The potential of photodynamic therapy (PDT)—Experimental investigations and clinical use. Biomed. Pharmacother. 2016, 83, 912–929. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Larkö, O. Photodynamic therapy. Proc. Australas. J. Dermatol. 2005, 46, S1–S2. [Google Scholar] [CrossRef]
- Yoon, I.; Li, J.Z.; Shim, Y.K. Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 2013, 46, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Lin, L.; Lin, H.; Wilson, B.C. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. J. Biophotonics 2016, 9, 1314–1325. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef]
- Cook, J.A.; Mitchell, J.B. Viability measurements in mammalian cell systems. Anal. Biochem. 1989, 179, 1–7. [Google Scholar] [CrossRef]
- Weisenthal, L.M. Differential Staining Cytotoxicity Assay: A Review. Methods Mol Biol. 2011, 731, 259–283. [Google Scholar] [CrossRef]
- Niles, A.L.; Moravec, R.A.; Riss, T.L. Update on in vitro cytotoxicity assays for drug development. Expert Opin. Drug Discov. 2008, 3, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Menyhárt, O.; Harami-Papp, H.; Sukumar, S.; Schäfer, R.; Magnani, L.; de Barrios, O.; Győrffy, B. Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim. Biophys. Acta Rev. Cancer 2016, 1866, 300–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell viability assays. In Assay Guidance Manual [Internet]; Markossian, S., Sittampalam, G.S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C.P., Baell, J., Caaveiro, J.M.M., Chung, T.D.Y., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2015; pp. 1–30. [Google Scholar]
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Scudiere, D.A.; Paul, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; et al. Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines. Cancer Res. 1988, 48, 4827–4833. [Google Scholar] [PubMed]
- Ishiyama, M.; Shiga, M.; Sasamoto, K.; Mizoguchi, M.; He, P. A New Sulfonated Tetrazolium Salt That Produces a Highly Water-Soluble Formazan Dye. Chem. Pharm. Bull. 1993, 41, 1118–1122. [Google Scholar] [CrossRef] [Green Version]
- Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991, 3, 207–212. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Riss, T. Is Your MTT Assay Really the Best Choice. Available online: https://www.promega.com.br/resources/pubhub/is-your-mtt-assay-really-the-best-choice/ (accessed on 21 August 2018).
- Kim, D.P.; Yahav, J.; Sperandeo, M.; Maloney, L.; McTigue, M.; Lin, F.; Clark, R.A.F. High cell density attenuates oxidative stress. Wound Repair Regen. 2012, 20, 74–82. [Google Scholar] [CrossRef]
- Shoemaker, M.; Cohen, I.; Campbell, M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J. Ethnopharmacol. 2004, 93, 381–384. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Kundu, S.; Kumar, S.; Chakrabarti, R. Vitamin A as an enzyme that catalyzes the reduction of MTT to formazan by vitamin C. J. Cell. Biochem. 2000, 80, 133–138. [Google Scholar] [CrossRef]
- Collier, A.C.; Pritsos, C.A. The mitochondrial uncoupler dicumarol disrupts the MTT assay. Biochem. Pharmacol. 2003, 66, 281–287. [Google Scholar] [CrossRef]
- Bruggisser, R.; Von Daeniken, K.; Jundt, G.; Schaffner, W.; Tullberg-Reinert, H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med. 2002, 68, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Stepanenko, A.A.; Dmitrenko, V.V. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 2015, 574, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kovalevich, J.; Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 2013, 1078, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Blázquez-Castro, A.; Stockert, J.C.; Sanz-Rodríguez, F.; Zamarrón, A.; Juarranz, A.; Schick, E.; Steiner, R.; Villanueva, A.; Fedorocko, P.; Esteller, M.; et al. Differential photodynamic response of cultured cells to methylene blue and toluidine blue: Role of dark redox processes. Photochem. Photobiol. Sci. 2009, 8, 371. [Google Scholar] [CrossRef]
- Pacheco, P.A.F.; Ferreira, L.B.G.; Mendonça, L.; Ferreira, D.N.M.; Salles, J.P.; Faria, R.X.; Teixeira, P.C.N.; Alves, L.A. P2X7 receptor as a novel drug delivery system to increase the entrance of hydrophilic drugs into cells during photodynamic therapy. J. Bioenerg. Biomembr. 2016, 48, 1–15. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. In Cancer Cell Culture. Methods in Molecular Biology (Methods and Protocols); Cree, I., Ed.; Humana Press: Totowa, NJ, USA, 2011; Volume 731, pp. 237–245. ISBN 978-1-61779-079-9. [Google Scholar]
- Bendell, J.C.; Rodon, J.; A Burris, H.; De Jonge, M.; Verweij, J.; Birle, D.; Demanse, D.; De Buck, S.S.; Ru, Q.C.; Peters, M.; et al. Phase I, Dose-Escalation Study of BKM120, an Oral Pan-Class I PI3K Inhibitor, in Patients With Advanced Solid Tumors. J. Clin. Oncol. 2012, 30, 282–290. [Google Scholar] [CrossRef]
- Gehring, M.P.; Pereira, T.C.B.; Zanin, R.F.; Borges, M.C.; Filho, A.B.; Battastini, A.M.O.; Bogo, M.R.; Lenz, G.; Campos, M.M.; Morrone, F.B. P2X7 receptor activation leads to increased cell death in a radiosensitive human glioma cell line. Purinergic Signal. 2012, 8, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Sun, X.; Zhang, D.; Wang, Y.; Tao, J.; Ou, S. TRAIL and Paclitaxel Synergize to Kill U87 Cells and U87-Derived Stem-Like Cells in Vitro. Int. J. Mol. Sci. 2012, 13, 9142–9156. [Google Scholar] [CrossRef]
- Strovel, J.; Sittampalam, S.; Coussens, N.P.; Hughes, M.; Inglese, J.; Kurtz, A.; Andalibi, A.; Patton, L.; Austin, C.; Baltezor, M.; et al. Early Drug Discovery and Development Guidelines: For Academic Researchers, Collaborators, and Start-up Companies. 2012 May 1 [updated 2016 Jul 1]. In Assay Guidance Manual [Internet]; Markossian, S., Sittampalam, G.S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C.P., Baell, J., Caaveiro, J.M.M., Chung, T.D.Y., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar] [PubMed]
- Cree, I.A. Principles of Cancer Cell Culture. In Advanced Structural Safety Studies; Springer Science and Business Media LLC: Berlin, Germany, 2011; Volume 731, pp. 13–26. [Google Scholar]
- Malo, N.; A Hanley, J.; Cerquozzi, S.; Pelletier, J.; Nadon, R. Statistical practice in high-throughput screening data analysis. Nat. Biotechnol. 2006, 24, 167–175. [Google Scholar] [CrossRef]
- Goktug, A.N.; Chai, S.C.C.; Chen, T. Data Analysis Approaches in High Throughput Screening. Drug Discovery 2013, 201–226. [Google Scholar]
- Brideau, C.; Gunter, B.; Pikounis, B.; Liaw, A. Improved Statistical Methods for Hit Selection in High-Throughput Screening. J. Biomol. Screen. 2003, 8, 634–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutros, M.; Brás, L.; Hahne, F.; Huber, W. End-to-end Analysis of Cell-Based Screens: From Raw Intensity Readings to the Annotated Hit List. Available online: https://www.bioconductor.org/packages/release/bioc/vignettes/cellHTS2/inst/doc/cellhts2Complete.pdf (accessed on 11 May 2018).
- Zhang, X.D. Illustration of SSMD, z Score, SSMD*, z* Score, and t Statistic for Hit Selection in RNAi High-Throughput Screens. J. Biomol. Screen. 2011, 16, 775–785. [Google Scholar] [CrossRef] [Green Version]
- Preobrazhensky, S.; Malugin, A.; Wentz, M. Flow cytometric assay for evaluation of the effects of cell density on cytotoxicity and induction of apoptosis. Cytometry 2001, 43, 199–203. [Google Scholar] [CrossRef]
- O’Donovan, M.R. A critique of methods to measure cytotoxicity in mammalian cell genotoxicity assays. Mutagenesis 2012, 27, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Freshney, R.I. Culture of Specific Cell Types. In Culture of Animal Cells; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kümmel, A.; Gubler, H.; Gehin, P.; Beibel, M.; Gabriel, D.; Parker, C.N. Integration of Multiple Readouts into the Z’ Factor for Assay Quality Assessment. J. Biomol. Screen. 2009, 15, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Min, D.-H.; Tang, W.-J.; Mrksich, M. Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nat. Biotechnol. 2004, 22, 717–723. [Google Scholar] [CrossRef]
- Hamid, R.; Rotshteyn, Y.; Rabadi, L.; Parikh, R.; Bullock, P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol. Vitr. 2004, 18, 703–710. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. In Methods in Molecular Biology; Springer Science and Business Media LLC: Berlin, Germany, 2017; Volume 1601, pp. 1–17. [Google Scholar]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Vistica, D.T.; Skehan, P.; Scudiero, D.; Monks, A.; Pittman, A.; Boyd, M.R. Tetrazolium-based Assays for Cellular Viability: A Critical Examination of Selected Parameters Affecting Formazan Production Tetrazolium-based Assays for Cellular Viability: A Critical Examination of Selected Parameters Affecting Formazan Production. Cancer Res. 1991, 51, 2515–2520. [Google Scholar]
- Lü, L.; Zhang, L.; Wai, M.S.M.; Yew, D.T.W.; Xu, J. Exocytosis of MTT formazan could exacerbate cell injury. Toxicol. Vitr. 2012, 26, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Slater, T.; Sawyer, B.; Sträuli, U. Studies on succinate-tetrazolium reductase systems. Biochim. Biophys. Acta 2003, 77, 383–393. [Google Scholar] [CrossRef]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Ann. Rev. 2005, 11, 127–152. [Google Scholar] [CrossRef]
- Takahashi, S.; Abe, T.; Gotoh, J.; Fukuuchi, Y. Substrate-dependence of reduction of MTT: A tetrazolium dye differs in cultured astroglia and neurons. Neurochem. Int. 2002, 40, 441–448. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Cox, G. MTT assay overestimates human airway smooth muscle cell number in culture. Biochem. Mol. Boil. Int. 1996, 38, 431–436. [Google Scholar]
- A Plumb, J.; Milroy, R.; Kaye, S.B. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 1989, 49, 4435–4440. [Google Scholar] [PubMed]
- Zhang, J.; Jiang, C.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B 2018, 8, 137–146. [Google Scholar] [CrossRef]
- Maioli, E.; Torricelli, C.; Fortino, V.; Carlucci, F.; Tommassini, V.; Pacini, A. Critical Appraisal of the MTT Assay in the Presence of Rottlerin and Uncouplers. Biol. Proced. Online 2009, 11, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Wang, B.; Ren, P. Reduction of MTT by flavonoids in the absence of cells. Colloids Surfaces B Biointerfaces 2005, 45, 108–111. [Google Scholar] [CrossRef]
Name | Methodological Mechanism’s Summary | Detection Method | Advantage | Disadvantage | Ref. |
---|---|---|---|---|---|
MTT Assay | MTT (2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide), a yellow tetrazole, is reduced to purple formazan in living and metabolic active cells through an enzymatic reaction | Spectrophotometer/570 nm | -Fast protocol; -High throughput | -Overestimation of viability; -Final solubilization step; -Reducing compounds are identified to interfere with tetrazolium reduction assays | [26,27] |
XTT Assay | Actively respiring cells convert the XTT (sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) to a water-soluble, orange colored formazan product | Spectrophotometer/490 nm | -High sensitivity; -Large dynamic range; -Water-soluble | -Endpoint assay; -Overestimation of viability | [28] |
WST-1 Assay | WST-1 (sodium 5-(2,4-disulfophenyl)-2-(4-iodophenyl)-3-(4-nitrophenyl)-2H- tetrazolium inner salt) is cleaved to a soluble formazan by a complex cellular mechanism that occurs primarily at the cell surface | Spectrophotometer /420–480 nm | -Highest sensitivity; -Faster protocol | -Endpoint assay; -Overestimation of viability | [29] |
MTS Assay | MTS (5-[3-(carboxymethoxy) phenyl]-3-(4,5-dimethyl-2-thiazolyl)-2-(4-sulfo- phenyl)-2H-tetrazolium inner salt) in the presence of phenazine methosulfate (PMS), produces a formazan product | Spectrophotometer/492–490 nm | -one-step MTT assay: reagent straight to cell culture without intermittent steps | -Colorimetric interference, the intermittent steps in the MTT assay could remove traces of colored compounds | [30] |
Alamar Blue | Resazurin compound that gets reduced to resorufin and dihydroresorufin in viable cells | Fluoro/colorimetric 560 nm excitation/590 nm emission filter set | -Measurement in both fluorometric and colorimetric plate readers | -Necessary to test cross-reactivity, -Necessity of additional control of the assay to verify cross-reactivity with any compound to be tested in a well without cells | [31] |
Z-Factor | Interpretation |
---|---|
1.0 | Ideal |
Between 0.5 and 1.0 | Excellent assay |
Between 0 and 0.5 | Marginal assay |
Cell Line | * Number of Cells | Z’Factor |
---|---|---|
SHSY5Y | 2000 | −0.4 |
5000 | 0.7 | |
10,000 | 0.8 | |
20,000 | 0.8 | |
30,000 | 0.9 | |
40,000 | 0.7 | |
U87 | 2000 | −1.2 |
5000 | 0.5 | |
10,000 | 0.7 | |
20,000 | 0.8 | |
40,000 | 0.8 | |
GL261 | 4000 | −0.7 |
6000 | 0.6 | |
8000 | 0.5 | |
10,000 | 0.8 | |
12,000 | 0.9 | |
20,000 | 0.8 |
Method | Equation | Observations | Reference |
---|---|---|---|
Controls-based | |||
Percent of control | where Xi is the raw measurement of treatment and Ĉ is the mean of the measurements of the positive controls | [43,49] | |
% Maximum data Absorbance | where Xi is the raw measurement of treatment and MAb is the maximum data absorbance of assay | W. R. | |
Percent of Median of control | where Xi is the raw measurement of treatment and “M of control” is the median of the measurements of the positive controls | [50] | |
Non-controls-based | |||
Z score | where Xi is the raw measurement on the compound, Ĉ and Sx are the mean and the standard deviation, respectively, of all measurements within the plate | [51] | |
Percent of samples | where Xi is the raw measurement on the compound and Ĉ is the mean of all measurements within the plate | [50] | |
Robust Percent of samples | where Xi is the raw measurement of the compound and Med is the median of all measurements within the plate | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreño, E.A.; Alberto, A.V.P.; de Souza, C.A.M.; de Mello, H.L.; Henriques-Pons, A.; Anastacio Alves, L. Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy. Appl. Sci. 2021, 11, 2603. https://doi.org/10.3390/app11062603
Carreño EA, Alberto AVP, de Souza CAM, de Mello HL, Henriques-Pons A, Anastacio Alves L. Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy. Applied Sciences. 2021; 11(6):2603. https://doi.org/10.3390/app11062603
Chicago/Turabian StyleCarreño, Edith Alejandra, Anael Viana Pinto Alberto, Cristina Alves Magalhães de Souza, Heber Lopes de Mello, Andrea Henriques-Pons, and Luiz Anastacio Alves. 2021. "Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy" Applied Sciences 11, no. 6: 2603. https://doi.org/10.3390/app11062603
APA StyleCarreño, E. A., Alberto, A. V. P., de Souza, C. A. M., de Mello, H. L., Henriques-Pons, A., & Anastacio Alves, L. (2021). Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy. Applied Sciences, 11(6), 2603. https://doi.org/10.3390/app11062603