Identification of Statin’s Action in a Small Cohort of Patients with Major Depression
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Statistical Analyses
2.4. Feature Selection
2.5. ML Classification
- Decision trees;
- Discriminant analysis;
- Logistic regression;
- Naïve Bayes;
- Support vector machines (SVM);
- K-nearest neighbors (KNN);
- Ensemble methods.
3. Results
4. Discussion
4.1. Related Work
4.2. Mood Improvement
4.3. Feature Selection
4.4. ML Classification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Giannopoulos, S.; Katsanos, A.H.; Tsivgoulis, G.; Marshall, R.S. Statins and cerebral hemodynamics. J. Cereb. Blood Flow Metab. 2012, 32, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Endres, M. Statins and stroke. J. Cereb. Blood Flow Metab. 2005, 25, 1093–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, M.R.; Wald, N.J.; Rudnicka, A.R. Quantifying effects of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: Systematic review and meta-analysis. Vasc. Med. 2003, 8, 289–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carod-Artal, F.J. Statins and cerebral vasomotor reactivity: Implications for a new therapy? Stroke 2006, 37, 2446–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraj, S.; Rogers, J.; Jialal, I. Statins and biomarkers of inflammation. Curr. Atheroscler. Rep. 2007, 9, 33–41. [Google Scholar] [CrossRef]
- Kanaya, T.; Yonekawa, M. Regional cerebral blood flow in depression. Jpn. J. Psychiatry Neurol. 1990, 44, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Tang, S.; Liu, X.; O’Neil, A.; Turner, A.; Chai, F.; Chen, F.; Berk, M. Assessing Regional Cerebral Blood Flow in Depression Using 320-Slice Computed Tomography. PLoS ONE 2014, 9, e107735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bench, C.J.; Frackowiak, R.S.; Dolan, R.J. Changes in regional cerebral blood flow on recovery from depression. Psychol. Med. 1995, 25, 247–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zhu, Y.; Zhu, Y.; Wu, S.; Liu, H.; Zhang, W.; Xu, C.; Zhang, H.; Hayashi, T.; Tian, M. Molecular, functional, and structural imaging of major depressive disorder. Neurosci. Bull. 2016, 32, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, Y.; Zhu, Y.; Zhou, L.; Han, Y.; Yin, T.; Cheng, Z.; Zhang, G.; Shen, Y.; Chen, J. Towards characterizing the regional cerebral perfusion in evaluating the severity of major depression disorder with SPECT/CT. BMC Psychiatry 2018, 18, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, W.D.; Aizenstein, H.J.; Alexopoulos, G.S. The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Mol. Psychiatry 2013, 18, 963–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, M.I.; Chaudhry, I.B.; Khoso, A.B.; Husain, M.O.; Rahman, R.R.; Hamirani, M.M.; Hodsoll, J.; Carvalho, A.F.; Husain, N.; Young, A.H. Adjunctive simvastatin for treatment-resistant depression: Study protocol of a 12-week randomised controlled trial. BJPsych Open 2019, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Kim, S.Y.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Yoon, J.S.; Kim, J.M. Comorbidity of Depression with Physical Disorders: Research and Clinical Implications. Chonnam Med. J. 2015, 51, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhang, M.; Ji, M.; Gong, W.; Chen, B.; Zorec, R.; Stenovec, M.; Verkhratsky, A.; Li, B. The Association Between Antidepressant Effect of SSRIs and Astrocytes: Conceptual Overview and Meta-analysis of the Literature. Neurochem. Res. 2021, 1–15. [Google Scholar] [CrossRef]
- Fava, M. Diagnosis and definition of treatment-resistant depression. Biol. Psychiatry 2003, 53, 649–659. [Google Scholar] [CrossRef]
- Dodd, S.; Bauer, M.; Carvalho, A.F.; Eyre, H.; Fava, M.; Kasper, S.; Kennedy, S.H.; Khoo, J.P.; Lopez Jaramillo, C.; Malhi, G.S.; et al. A clinical approach to treatment resistance in depressed patients: What to do when the usual treatments don’t work well enough? World J. Biol. Psychiatry 2020, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Sanches, M. Experimental Therapeutics in Treatment-Resistant Major Depressive Disorder. J. Exp. Pharmacol. 2021, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef] [Green Version]
- Carboni, L.; McCarthy, D.J.; Delafont, B.; Filosi, M.; Ivanchenko, E.; Ratti, E.; Learned, S.M.; Alexander, R.; Domenici, E. Biomarkers for response in major depression: Comparing paroxetine and venlafaxine from two randomised placebo-controlled clinical studies. Transl. Psychiatry 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Woods, A.G.; Wormwood, K.L.; Iosifescu, D.V.; Murrough, J.; Darie, C.C. Protein Biomarkers in Major Depressive Disorder: An Update. Adv. Exp. Med. Biol. 2019, 1140, 585–600. [Google Scholar]
- Malik, S.; Singh, R.; Arora, G.; Dangol, A.; Goyal, S. Biomarkers of Major Depressive Disorder: Knowing is Half the Battle. Clin. Psychopharmacol. Neurosci. 2021, 19, 12. [Google Scholar] [CrossRef]
- Kang, S.-G.; Cho, S.-E. Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeroff, C.B. The state of our understanding of the pathophysiology and optimal treatment of depression: Glass half full or half empty? Am. J. Psychiatry 2020, 177, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, P.; Duong, A.; Figueira, M.L.; Costa-Vitali, A.; Scola, G. Current therapeutic approaches for targeting inflammation in depression and cardiovascular disease. Curr. Drug Metab. 2018, 19, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Lippmann, S. Can statins diminish depression? Prim. Care Companion CNS Disord. 2018, 20. [Google Scholar] [CrossRef] [PubMed]
- Hyyppä, M.T.; Kronholm, E.; Virtanen, A.; Leino, A.; Jula, A. Does simvastatin affect mood and steroid hormone levels in hypercholesterolemic men? A randomized double-blind trial. Psychoneuroendocrinology 2003, 28, 181–194. [Google Scholar] [CrossRef]
- Morales, K.; Wittink, M.; Datto, C.; DiFilippo, S.; Cary, M.; TenHave, T.; Katz, I.R. Simvastatin Causes Changes in Affective Processes in Elderly Volunteers. J. Am. Geriatr. Soc. 2006, 54, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Yatham, M.S.; Yatham, K.S.; Ravindran, A.V.; Sullivan, F. Do statins have an effect on depressive symptoms? A systematic review and meta-analysis. J. Affect. Disord. 2019, 257, 55–63. [Google Scholar] [CrossRef]
- Salagre, E.; Fernandes, B.S.; Dodd, S.; Brownstein, D.J.; Berk, M. Statins for the treatment of depression: A meta-analysis of randomized, double-blind, placebo-controlled trials. J. Affect. Disord. 2016, 200, 235–242. [Google Scholar] [CrossRef]
- Molero, Y.; Cipriani, A.; Larsson, H.; Lichtenstein, P.; D’Onofrio, B.M.; Fazel, S. Associations between statin use and suicidality, depression, anxiety, and seizures: A Swedish total-population cohort study. Lancet Psychiatry 2020, 7, 982–990. [Google Scholar] [CrossRef]
- Ljung, R.; Köster, M.; Björkenstam, E.; Salmi, P. Associations between statin use and suicidality, depression, anxiety, and seizures. Lancet Psychiatry 2021, 8, e2. [Google Scholar] [CrossRef]
- Lee, M.C.; Peng, T.R.; Lee, C.H.; Wang, J.Y.; Lee, J.A.; Chen, S.M.; Shiang, J.C. Statin Use and Depression Risk: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2020, 282, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Rahangdale, S.; Fating, R.; Gajbhiye, M.; Kapse, M.; Inamdar, N.; Kotagale, N.; Umekar, M.; Taksande, B. Involvement of agmatine in antidepressant-like effect of HMG-CoA reductase inhibitors in mice. Eur. J. Pharmacol. 2021, 892, 173739. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ruan, M.; Chen, J.; Fang, Y. Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications. Neurosci. Bull. 2021, 1–18. [Google Scholar] [CrossRef]
- Wang, W.; Krishnan, E. Big data and clinicians: A review on the state of the science. JMIR Med. Inf. 2014, 2, e1. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, I.M.; Titterington, D.M. Statistical challenges of high-dimensional data. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 4237–4253. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, R.; De Vito, C.; Migliara, G.; Glocker, K.; Binenbaum, I.; Ricciardi, W.; Boccia, S. Benefits and challenges of Big Data in healthcare: An overview of the European initiatives. Eur. J. Public Health 2019, 29 (Suppl. 3), 23–27. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, R. Statistical challenges with high dimensionality: Feature selection in knowledge discovery. Int. Congr. Math. ICM 2006, 3, 595–622. [Google Scholar]
- Shen, L.; Yin, Q. The classification for High-dimension low-sample size data. arXiv 2020, arXiv:2006.13018. [Google Scholar]
- Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease Prediction by Machine Learning Over Big Data From Healthcare Communities. IEEE Access 2017, 5, 8869–8879. [Google Scholar] [CrossRef]
- Geurkink, Y.; Boone, J.; Verstockt, S.; Bourgois, J.G. Machine Learning-Based Identification of the Strongest Predictive Variables of Winning and Losing in Belgian Professional Soccer. Appl. Sci. 2021, 11, 2378. [Google Scholar] [CrossRef]
- Liu, R.; Wei, L.; Zhang, P. A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data. Nat. Mach. Intell. 2021, 3, 68–75. [Google Scholar] [CrossRef]
- Khan, M.A.; Kim, J. Toward Developing Efficient Conv-AE-Based Intrusion Detection System Using Heterogeneous Dataset. Electronics 2020, 9, 1771. [Google Scholar] [CrossRef]
- Russak, A.J.; Chaudhry, F.; De Freitas, J.K.; Baron, G.; Chaudhry, F.F.; Bienstock, S.; Paranjpe, I.; Vaid, A.; Ali, M.; Zhao, S.; et al. Machine Learning in Cardiology—Ensuring Clinical Impact Lives Up to the Hype. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 379–390. [Google Scholar] [CrossRef]
- Antonelli, J.; Claggett, B.L.; Henglin, M.; Kim, A.; Ovsak, G.; Kim, N.; Deng, K.; Rao, K.; Tyagi, O.; Watrous, J.D.; et al. Statistical Workflow for Feature Selection in Human Metabolomics Data. Metabolites 2019, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Jo, I.; Lee, S.; Oh, S. Improved measures of redundancy and relevance for mRMR feature selection. Computers 2019, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck depression inventory-II. San Antonio 1996, 78, 490–498. [Google Scholar]
- Urquiaga, I.; Ávila, F.; Echeverria, G.; Perez, D.; Trejo, S.; Leighton, F. A Chilean berry concentrate protects against postprandial oxidative stress and increases plasma antioxidant activity in healthy humans. Oxid. Med. Cell. Longev. 2017, 2017, 8361493. [Google Scholar] [CrossRef] [Green Version]
- Beretta, L.; Santaniello, A. Nearest neighbor imputation algorithms: A critical evaluation. BMC Med. Inform. Decis. Mak. 2016, 16, 74. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-H.; Tsai, C.-F.; Sue, K.-L.; Huang, M.-W. The Feature Selection Effect on Missing Value Imputation of Medical Datasets. Appl. Sci. 2020, 10, 2344. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.; Oh, S. Hybrid-Recursive Feature Elimination for Efficient Feature Selection. Appl. Sci. 2020, 10, 2344. [Google Scholar] [CrossRef]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 2020, 143, 106839. [Google Scholar] [CrossRef]
- Urbanowicz, R.J.; Meeker, M.; la Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef]
- Feng, S.; Chen, J.; Tang, Y. Identification of Low Frequency Oscillations Based on Multidimensional Features and ReliefF-mRMR. Energies 2019, 12, 2762. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.M.; Gaussier, E. RELIEF Algorithm and Similarity Learning for k-NN. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2012, 4, 445–458. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; Volume 103. [Google Scholar]
- Malvoni, M.; Chaibi, Y. Machine Learning Based Approaches for Modeling the Output Power of Photovoltaic Array in Real Outdoor Conditions. Electronics 2020, 9, 315. [Google Scholar]
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018, arXiv:1811.12808. [Google Scholar]
- Lin, W.; Hasenstab, K.; Cunha, G.M.; Schwartzman, A. Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment. Sci. Rep. 2020, 10, 20336. [Google Scholar] [CrossRef] [PubMed]
- Frésard, M.E.; Erices, R.; Bravo, M.L.; Cuello, M.; Owen, G.I.; Ibáñez, C.; Rodriguez-Fernandez, M. Multi-objective optimization for personalized prediction of venous thromboembolism in ovarian cancer patients. IEEE J. Biomed. Heal. Inf. 2019, 24, 1500–1508. [Google Scholar] [CrossRef]
- Kim, J. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 2009, 53, 3735–3745. [Google Scholar] [CrossRef]
- Shuhaili, M.F.R.M.A.; Samsudin, I.N.; Stanslas, S.H.J.; Thambiah, S.C. Effects of different types of statins on lipid profile: A perspective on Asians. Int. J. Endocrinol. Metab. 2017, 15, e43319. [Google Scholar]
- Efthimiadis, A. Rosuvastatin and cardiovascular disease: Did the strongest statin hold the initial promises? Angiology 2008, 59, 62S–64S. [Google Scholar] [CrossRef] [PubMed]
- Köhler-Forsberg, O.; Otte, C.; Gold, S.M.; Østergaard, S.D. Statins in the treatment of depression: Hype or hope? Pharmacol. Ther. 2020, 215, 107625. [Google Scholar] [CrossRef]
- Dave, C.V.; Winterstein, A.G.; Park, H.; Cook, R.L.; Hartzema, A.G. Comparative risk of lipophilic and hydrophilic statins on incident depression: A retrospective cohort study. J. Affect. Disord. 2018, 238, 542–546. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Hedayati, A. Augmentation of fluoxetine with lovastatin for treating major depressive disorder, a randomized double-blind placebo controlled-clinical trial. Depress. Anxiety 2013, 30, 1084–1088. [Google Scholar] [CrossRef]
- Gougol, A.; Zareh-Mohammadi, N.; Raheb, S.; Farokhnia, M.; Salimi, S.; Iranpour, N.; Yekehtaz, H.; Akhondzadeh, S. Simvastatin as an adjuvant therapy to fluoxetine in patients with moderate to severe major depression: A double-blind placebo-controlled trial. J. Psychopharmacol. 2015, 29, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Khodakarami, S.; Jahangard, L.; Ahmadpanah, M.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. In a randomized, double-blind clinical trial, adjuvant atorvastatin improved symptoms of depression and blood lipid values in patients suffering from severe major depressive disorder. J. Psychiatr. Res. 2014, 58, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Mohebbi, M.; Dean, O.M.; Cotton, S.M.; Chanen, A.M.; Dodd, S.; Ratheesh, A.; Amminger, G.P.; Phelan, M.; Weller, A.; et al. Youth Depression Alleviation with Anti-inflammatory Agents (YoDA-A): A randomised clinical trial of rosuvastatin and aspirin. BMC Med. 2020, 18, 16. [Google Scholar] [CrossRef]
- Yatham, M.S.; Yatham, S.S. Should aspirin be tested for secondary prevention of depression? Bipolar Disord. 2020. [Google Scholar] [CrossRef] [PubMed]
- Massardo, T.; Quintana, J.C.; Jaimovich, R.; Sáez, C.G.; Risco, L.; Liberman, C.; Araya, A.V.; Galleguillos, T.; Castro-Mora, G.; Pereira, J. Regional Brain Perfusion Is Associated with Endothelial Dysfunction Markers in Major Depressive Disorder. Neuropsychobiology 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, H.; Bagherzadeh, K.; Nazeri, Z.; Hassanijirdehi, M. Vitamin D, parathyroid hormone, serum calcium and phosphorus in patients with schizophrenia and major depression. Int. J. Psychiatry Clin. Pract. 2013, 17, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Al-Dujaili, A.H.; Al-Hakeim, H.K.; Twayej, A.J.; Maes, M. Total and ionized calcium and magnesium are significantly lowered in drug-naïve depressed patients: Effects of antidepressants and associations with immune activation. Metab. Brain Dis. 2019, 34, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
Characteristic (Units) | Average (Range) |
---|---|
Age (years) | 34 (23–49) |
Education (years) | 16 (12–21) |
Body Mass Index (kg/m2) | 27 (18–49) |
HamD 17 | 24 (14–40) |
Beck score | 30 (12–46) |
Thyroid-Stimulating Hormone (µU/mL) | 2.5 (1.0–7.5) |
Total Cholesterol (mg/dL) | 175 (128–229) |
Triglycerides (mg/dL) | 102 (43–249) |
High-Density Lipoproteins (mg/dL) | 56 (23–85) |
Low-Density Lipoproteins (mg/dL) | 100 (56–144) |
Glycemia (mg/dL) | 89 (72–206) |
C Reactive Protein (µg/mL) | 2.5 (0–19.8) |
Erythrocyte Sedimentation Rate (mm/h) | 9 (2–28) |
Parameter | Formula |
---|---|
Accuracy | |
Sensitivity | |
Specificity | |
Precision | |
FOR | |
MCC |
Sidak’s Multiple Comparison Test | Adjusted p Value | 95% Confidence Interval |
---|---|---|
Rosuvastatin | ||
HAM21 Before vs. HAM21 After | 0.0036 | 2.693–29.31 |
HAM17 Before vs. HAM17 After | 0.0006 | 3.963–28.04 |
BDI-II Before vs. BDI-II After | <0.0001 | 9.508–33.58 |
Placebo | ||
HAM21 Before vs. HAM21 After | 0.0025 | 3.026–29.64 |
HAM17 Before vs. HAM17 After | 0.0128 | 1.375–26.62 |
BDI-II Before vs. BDI-II After | 0.251 | −1.025–24.22 |
mRMR | ReliefF (k = 3) | ||
---|---|---|---|
∆ Variable | Variable Type | ∆ Variable | Variable Type |
Perfusion Abnormality in Left Middle Temporal Gyrus | Perfusion Abnormality | sCD40L | Platelet Activation Marker |
Perfusion Abnormality in Left Temporal Pole | Perfusion Abnormality | NAP-2 | Platelet Activation Marker |
Perfusion Abnormality in Right Brodmann Area (BA) 6 | Perfusion Abnormality | Perfusion Abnormality in Left Inferior Temporal Gyrus | Perfusion Abnormality |
Perfusion Abnormality in Right BA 23 | Perfusion Abnormality | ASTLCMD | CANTAB: attention task |
Thyroid-Stimulating Hormone (TSH) | Functional Blood Test | Phosphorus | Metabolic Blood Test |
Performance Index | Classifier Built with mRMR Features | Classifier Built with ReliefF Features |
---|---|---|
Accuracy | 76.19% (average 78.33%) | 85.71% (average 86.67%) |
Sensitivity | 70.0% | 90.0% |
Specificity | 81.82% | 81.82% |
Precision | 77.78% | 81.82% |
FOR | 25.0% | 10.0% |
MCC | +0.52 | +0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakkar, I.; Massardo, T.; Pereira, J.; Quintana, J.C.; Risco, L.; Saez, C.G.; Corral, S.; Villa, C.; Spuler, J.; Olivares, N.; et al. Identification of Statin’s Action in a Small Cohort of Patients with Major Depression. Appl. Sci. 2021, 11, 2827. https://doi.org/10.3390/app11062827
Thakkar I, Massardo T, Pereira J, Quintana JC, Risco L, Saez CG, Corral S, Villa C, Spuler J, Olivares N, et al. Identification of Statin’s Action in a Small Cohort of Patients with Major Depression. Applied Sciences. 2021; 11(6):2827. https://doi.org/10.3390/app11062827
Chicago/Turabian StyleThakkar, Ishani, Teresa Massardo, Jaime Pereira, Juan Carlos Quintana, Luis Risco, Claudia G. Saez, Sebastián Corral, Carolina Villa, Jane Spuler, Nixa Olivares, and et al. 2021. "Identification of Statin’s Action in a Small Cohort of Patients with Major Depression" Applied Sciences 11, no. 6: 2827. https://doi.org/10.3390/app11062827
APA StyleThakkar, I., Massardo, T., Pereira, J., Quintana, J. C., Risco, L., Saez, C. G., Corral, S., Villa, C., Spuler, J., Olivares, N., Valenzuela, G., Castro, G., Riedel, B., Vicentini, D., Muñoz, D., Lastra, R., & Rodriguez-Fernandez, M. (2021). Identification of Statin’s Action in a Small Cohort of Patients with Major Depression. Applied Sciences, 11(6), 2827. https://doi.org/10.3390/app11062827