Design and Optimization of Piezoelectric-Powered Portable UV-LED Water Disinfection System
Abstract
:1. Introduction
- To the knowledge of the authors, the proposed piezoelectric-powered portable UV-LED water disinfection system is the first reported in the literature. This has been proven by the filed patent search where only a high-level design of the system is presented.
- The work elaborates the system design, including mechanical, electrical and chemical aspects and/or sub-systems.
- The paper develops the mathematical-physical model of the overall system in the form of objective functions (OF) and provides an optimal design for any targeted parameters by employing Genetic Algorithms (GA).
2. Operation of the Disinfection System
3. Modeling of the System
3.1. Mechanical System
3.2. Piezoelectric Energy Harvesting System
3.3. UV-LED Disinfection System
4. Optimization
4.1. Feasible Objective Functions (OFs)
4.1.1. Shake Duration
4.1.2. Cost of the System
4.2. Solution Method
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations General Assembly. The Human Right to Water and Sanitation; United Nations General Assembly: New York, NY, USA, 2010. [Google Scholar]
- WHO | Progress on Sanitation and Drinking-Water. Available online: http://www.who.int/water_sanitation_health/publications/9789241563956/en/ (accessed on 31 December 2020).
- Song, K.; Mohseni, M.; Taghipour, F. Application of Ultraviolet Light-Emitting Diodes (UV-LEDs) for Water Disinfection: A Review. Water Res. 2016, 94, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Hijnen, W.A.M.; Beerendonk, E.F.; Medema, G.J. Inactivation Credit of UV Radiation for Viruses, Bacteria and Protozoan (Oo)Cysts in Water: A Review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Belosevic, M.; Craik, S.A.; Stafford, J.L.; Neumann, N.F.; Kruithof, J.; Smith, D.W. Studies on the Resistance/Reactivation of Giardia Muris Cysts and Cryptosporidium Parvum Oocysts Exposed to Medium-Pressure Ultraviolet Radiation. FEMS Microbiol. Lett. 2001, 204, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Hamamoto, A.; Takahashi, A.; Nakano, M.; Wakikawa, N.; Tachibana, S.; Ikehara, T.; Nakaya, Y.; Akutagawa, M.; Kinouchi, Y. Development of a New Water Sterilization Device with a 365 Nm UV-LED. Med. Bio. Eng. Comput. 2007, 45, 1237–1241. [Google Scholar] [CrossRef]
- Saraceno, D. Solar Powered Portable Water Purifier. U.S. Patent US10/065,999, 8 March 2005. [Google Scholar]
- Lifschitz, E.L. Portable Water Purifier with Ultraviolet Light Source. World Intellectual Property Organization PCT/US1999/018355, 24 February 2000. [Google Scholar]
- Aurbach, D.; Weissman, I.; Zaban, A.; Dan, P. On the Role of Water Contamination in Rechargeable Li Batteries. Electrochim. Acta 1999, 45, 1135–1140. [Google Scholar] [CrossRef]
- Horiuchi, S.; Tsutsumi, J.; Kobayashi, K.; Kumai, R.; Ishibashi, S. Piezoelectricity of Strongly Polarized Ferroelectrics in Prototropic Organic Crystals. J. Mater. Chem. C 2018, 6, 4714–4719. [Google Scholar] [CrossRef]
- Mehrotra, U. Walking Charger Using Piezo-Electric Material. Int. J. Technol. Res. Eng. 2016, 4, 57–60. [Google Scholar]
- Sodano, H.A.; Inman, D.J.; Park, G. Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. J. Intell. Mater. Syst. Struct. 2005, 16, 799–807. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.-H.; Kim, J. A Review of Piezoelectric Energy Harvesting Based on Vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Cassassuce, F.V.; Arce, I.B.; Zamudio, O.R. UV Water Purification System. U.S. Patent US11/418,857, 22 April 2008. [Google Scholar]
- Lantis, R.; Phelan, J.P.; Phelan, A. Method and Apparatus for Solar-Based Water Disinfection. U.S. Patent US13/108,523, 23 October 2012. [Google Scholar]
- Yanke, R.D. Ultraviolet Light Purification Drinking System. U.S. Patent US14/691,639, 29 October 2015. [Google Scholar]
- Vilhunen, S.; Särkkä, H.; Sillanpää, M. Ultraviolet Light-Emitting Diodes in Water Disinfection. Environ. Sci. Pollut. Res. 2009, 16, 439–442. [Google Scholar] [CrossRef]
- Şala, D.E. Piezoelectric Powered Portable Water Disinfection System with Ultroviole Light. Turkish Patent Institute 2019/22118, 28 December 2020. (pending). [Google Scholar]
- Nabavi, S.; Zhang, L. MEMS Piezoelectric Energy Harvester Design and Optimization Based on Genetic Algorithm. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar]
- Hsieh, J.-C.; Lin, D.T.W.; Lin, C.-L. The Development and Optimization of an Innovative Piezoelectric Energy Harvester on the Basis of Vapor-Induced Vibrations. Mech. Syst. Signal Process. 2019, 131, 649–658. [Google Scholar] [CrossRef]
- Chopra, I. Review of State of Art of Smart Structures and Integrated Systems. AIAA J. 2002, 40, 2145–2187. [Google Scholar] [CrossRef]
- Sriramdas, R.; Pratap, R. Scaling and Performance Analysis of MEMS Piezoelectric Energy Harvesters. J. Microelectromechanical Syst. 2017, 26, 679–690. [Google Scholar] [CrossRef]
- He, X.; Teh, K.S.; Li, S.; Dong, L.; Jiang, S. Modeling and Experimental Verification of an Impact-Based Piezoelectric Vibration Energy Harvester with a Rolling Proof Mass. Sens. Actuators A Phys. 2017, 259, 171–179. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, H.; Ren, X.; Long, C.; Liu, G.; Liu, Z. Lead-Free Bi5−xLaxTi3FeO15 (x = 0, 1) Nanofibers toward Wool Keratin-Based Biocompatible Piezoelectric Nanogenerators. J. Mater. Chem. C 2016, 4, 7324–7331. [Google Scholar] [CrossRef]
- Ren, X.; Fan, H.; Zhao, Y.; Liu, Z. Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. ACS Appl. Mater. Interfaces 2016, 8, 26190–26197. [Google Scholar] [CrossRef]
- Zhang, T.; Liao, Y.; Zhang, K.; Chen, J. Theoretical Analysis of the Dynamic Properties of a 2-2 Cement-Based Piezoelectric Dual-Layer Stacked Sensor under Impact Load. Sensors 2017, 17, 1019. [Google Scholar] [CrossRef] [Green Version]
- Uno, M.; Tanaka, K. Accelerated Charge–Discharge Cycling Test and Cycle Life Prediction Model for Supercapacitors in Alternative Battery Applications. IEEE Trans. Ind. Electron. 2012, 59, 4704–4712. [Google Scholar] [CrossRef]
- USA Military Standard. Piezoelectric Ceramic Material and Measurements Guidelines for Sonar Transducers. MILSTD-1376B 1995. [Google Scholar]
- Williams, C.B.; Yates, R.B. Analysis Of A Micro-Electric Generator For Microsystems. In Proceedings of the International Solid-State Sensors and Actuators Conference—TRANSDUCERS ’95, Stockholm, Sweden, 25–29 June 1995; Volume 1, pp. 369–372. [Google Scholar]
- APC International, Ltd. Piezoelectric Ceramics: Principles and Applications; APC International, Ltd.: Mackeyville, PA, USA, 2011; ISBN 978-0-615-56503-3. [Google Scholar]
- Boyce, J.M. Modern Technologies for Improving Cleaning and Disinfection of Environmental Surfaces in Hospitals. Antimicrob. Resist. Infect. Control 2016, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chatterley, C.; Linden, K. Demonstration and Evaluation of Germicidal UV-LEDs for Point-of-Use Water Disinfection. J. Water Health 2010, 8, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Würtele, M.A.; Kolbe, T.; Lipsz, M.; Külberg, A.; Weyers, M.; Kneissl, M.; Jekel, M. Application of GaN-Based Ultraviolet-C Light Emitting Diodes–UV LEDs–for Water Disinfection. Water Res. 2011, 45, 1481–1489. [Google Scholar] [CrossRef]
- Oguma, K.; Katayama, H.; Mitani, H.; Morita, S.; Hirata, T.; Ohgaki, S. Determination of Pyrimidine Dimers InEscherichia Coli and Cryptosporidium Parvum during UV Light Inactivation, Photoreactivation, and Dark Repair. Appl. Environ. Microbiol. 2001, 67, 4630–4637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, R.; Lhotsky, M.; Haider, T.; Cabaj, A. UV Inactivation, Liquid-Holding Recovery, and Photoreactivation of Escherichia Coli O157 and Other Pathogenic Escherichia Coli Strains in Water. J. Food Prot. 2000, 63, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Kalisvaart, B.F. Re-Use of Wastewater: Preventing the Recovery of Pathogens by Using Medium-Pressure UV Lamp Technology. Water Sci. Technol. 2004, 50, 337–344. [Google Scholar] [CrossRef]
- Murata, Y.; Osakabe, M. The Bunsen–Roscoe Reciprocity Law in Ultraviolet-B-Induced Mortality of the Two-Spotted Spider Mite Tetranychus Urticae. J. Insect Physiol. 2013, 59, 241–247. [Google Scholar] [CrossRef] [Green Version]
- NSF International Standard/American National Standard for Drinking Water Treatment Units. NSF/ANSI 55: Ultraviolet Microbiological Water Treatment Systems; NSF International: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Yusup, N.; Zain, A.M.; Hashim, S.Z.M. Evolutionary Techniques in Optimizing Machining Parameters: Review and Recent Applications (2007–2011). Expert Syst. Appl. 2012, 39, 9909–9927. [Google Scholar] [CrossRef]
- Kumar, M.; Husain, M.; Upreti, N.; Gupta, D. Genetic Algorithm: Review and Application. International Journal of Information Technology and Knowledge Management. 2010, 451–454. [Google Scholar] [CrossRef]
Parameter | Value/Range |
---|---|
Shake acceleration | 25 35 |
Height of the moving block | 0.06 0.1 |
Outer radius of moving block | 0.036 |
Inner radius of moving block | 0.031 0.035 |
Floor radius of the drinking glass | 0.03 |
Density of the block constituent (steel alloy 3D filament) | 3500 |
Parameter | Value/Range |
---|---|
Thickness of PZT ceramic | 0.001 0.003 |
Diameter of PZT ceramic | 0.01 0.02 |
Number of PZT ceramic | |
Bottle shake frequency | 3.5 5.5 |
Parameter | Value/Range |
---|---|
UV-LED power consumption | 1.5 2.5 |
UV-LED flux power | 0.0025 0.08 |
UV dosage | 792 |
Parameter | Value/Range |
---|---|
Population size | 50 |
Creation function | Constraint-dependent |
Selection function | Stochastic-dependent |
Crossover function | Constraint-dependent |
Mutation function | Constraint-dependent |
Function tolerance | 1 10−8 |
Constraint tolerance | 1 10−8 |
Parameter | Value |
---|---|
Power dissipation of UV-LEDs () | 1.5 . |
Number of PZT ceramic () | 10 |
Fx power of UV-LEDs () | 0.08 |
Bottle shake frequency () | 5.5 |
Bottle shake acceleration () | 35 |
Height of the moving block () | 0.1 |
Piezoelectric ceramics thickness () | 0.003 |
Inner radius of the moving block ( | 0.031 |
Piezoelectric ceramic diameter () | 0.01 |
Mass of the moving block () | 0.42 |
Applied force on PZTs () | 14.74 |
Generated voltage () | 13.96 |
Total harvested energy () | 42.19 |
Supercapacitor min. voltage () | 13.96 |
Supercapacitor min. energy capacity () | 42.19 |
Disinfection duration () | 27.9 |
Parameter | Cost Scenario | ||
---|---|---|---|
Low | Moderate | High | |
() | 5.82 | 34.39 | 87.32 |
() | 5040 | 100.6 | 15.4 |
() | 1.5 | 1.5 | 1.5 |
1 | 4 | 10 | |
() | 0.0025 | 0.034 | 0.08 |
() | 5.49 | 5.49 | 5.5 |
() | 34.98 | 34.99 | 35.0 |
() | 0.099 | 0.1 | 0.1 |
() | 0.003 | 0.003 | 0.003 |
() | 0.031 | 0.031 | 0.031 |
() | 0.01 | 0.01 | 0.01 |
() | 895.7 | 65.9 | 27.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şala, D.E.; Dalveren, Y.; Kara, A.; Derawi, M. Design and Optimization of Piezoelectric-Powered Portable UV-LED Water Disinfection System. Appl. Sci. 2021, 11, 3007. https://doi.org/10.3390/app11073007
Şala DE, Dalveren Y, Kara A, Derawi M. Design and Optimization of Piezoelectric-Powered Portable UV-LED Water Disinfection System. Applied Sciences. 2021; 11(7):3007. https://doi.org/10.3390/app11073007
Chicago/Turabian StyleŞala, Derda E., Yaser Dalveren, Ali Kara, and Mohammad Derawi. 2021. "Design and Optimization of Piezoelectric-Powered Portable UV-LED Water Disinfection System" Applied Sciences 11, no. 7: 3007. https://doi.org/10.3390/app11073007
APA StyleŞala, D. E., Dalveren, Y., Kara, A., & Derawi, M. (2021). Design and Optimization of Piezoelectric-Powered Portable UV-LED Water Disinfection System. Applied Sciences, 11(7), 3007. https://doi.org/10.3390/app11073007