Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles
Abstract
:1. Introduction
2. CET Systems and EV
2.1. Main Features of CET Devices
2.2. Appropriateness for EV
3. Inductive Power Transfer IPT in EV and Hybrid EV
4. Static Battery Charging
Interoperability Analysis
5. IPT in EV on Road
6. Modeling in IPT Systems
6.1. Determination of the IPT Electric Circuit Parameters
6.2. Behavior of the IPT Electric Circuit
7. EMC Analysis and Human Exposure in EV
7.1. Human Body Model
7.2. Fields in the Body Tissues
8. Discussion and Conclusions
- ∗
- Battery technology is linked to innovations in electrochemical research to achieve high capacity with low mass and volume.
- ∗
- The reduction in the weight of the vehicle apart from the problem of the battery, concerns the new materials of the structure. This implies safety expertise in the field of mechanical and electromagnetic compatibility (EMC).
- ∗
- Apart from transport close to home where the EV usually uses an identified IPT, the problem of interoperability of IPT installations appears to be a critical difficulty.
- ∗
- In the case of a mode of travel for long-distance, the question of infrastructure poses specific technical and economic problems. The first concerns the adapted technologies taking into account uncontrolled weather conditions, the optimization of the primary ground side of the IPT, the intelligent communication between the EV and the infrastructure system, the organization of flows and the management of interoperability. The economic problem mainly concerns the size of the demand due to the obvious viability of the installation.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazmierkowski, M.; Moradewicz, A. Unplugged but Connected: Review of Contactless Energy Transfer Systems. IEEE Ind. Electron. Mag. 2012, 6, 47–55. [Google Scholar] [CrossRef]
- Popovic, Z. Cut the cord: Low-power far-field wireless powering. IEEE Microw. Mag. 2013, 14, 55–62. [Google Scholar] [CrossRef]
- Hui, S.; Lee, C. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 2014, 9, 4500–4511. [Google Scholar] [CrossRef] [Green Version]
- Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Jawad, H.M.; Ismail, M. Opportunities and challenges for near-field wireless power transfer: A review. Energies 2017, 10, 1022. [Google Scholar] [CrossRef]
- Roes, M.; Duarte, J.; Hendrix, M.; Lomonova, E. Acoustic energy transfer: A review. IEEE Trans. Industr. Electron. 2013, 60, 242–248. [Google Scholar] [CrossRef]
- Basaeri, H.; Christensen, D.B.; Roundy, S.A. Review of acoustic power transfer for bio-medical implants. Smart Mater. Struct. 2016, 25, 123001. [Google Scholar] [CrossRef]
- Christensen, D.B.; Roundy, S. Ultrasonically powered piezoelectric generators for bio-implantable sensors: Plate versus diaphragm. J. Intell. Mater. Syst. Struct. 2016, 27, 1092–1105. [Google Scholar] [CrossRef]
- Bakhtiari-Nejad, M.; Elnahhas, A.; Hajj, M.R.; Shahab, S. Acoustic holograms in contactless ultrasonic power transfer systems: Modeling and experiment. J. Appl. Phys. 2018, 124, 244901. [Google Scholar] [CrossRef]
- Waffenschmidt, E.; Staring, T. Limitation of inductive power transfer for consumer application. In Proceedings of the 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Hu, Y.; Zhang, X.; Yang, J.; Jiang, Q. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 773–781. [Google Scholar] [CrossRef]
- Raible, D.E.; Dinca, D.; Nayfeh, T.H. Optical frequency optimization of a high intensity laser power beaming system utilizing VMJ photovoltaic cells. In Proceedings of the International Conference on Space Optical Systems and Applications, Santa Monica, CA, USA, 11–13 May 2011; pp. 232–238. [Google Scholar]
- Sahai, A.; Graham, D. Optical wireless power transmission at long wavelengths. In Proceedings of the International Conference on Space Optical Systems and Applications, Santa Monica, CA, USA, 11–13 May 2011; pp. 164–170. [Google Scholar]
- Huang, C.-M.; Wijanto, E.; Tseng, S.-P.; Liu, Y.-H.; Luo, Y.-T.; Lin, H.-C.; Cheng, H.-C. Implementation of a fiber-based resonant beam system for multiuser optical wireless information and power transfer. Optics Commun. 2021, 486, 126778. [Google Scholar] [CrossRef]
- Putra, A.W.S.; Kato, H.; Maruyama, T. Infrared LED marker for target recognition in indoor and outdoor applications of optical wireless power transmission system. Jpn. J. Appl. Phys. 2020, 59, SOOD06. [Google Scholar] [CrossRef]
- Liu, C.; Hu, A.P.; Nair, N.-K.C. Modelling and analysis of a capacitively coupled contactless power transfer system. IET Power Electron. 2011, 4, 808–815. [Google Scholar] [CrossRef]
- Theodoridis, M.P. Effective capacitive power transfer. IEEE Trans. Power Electron. 2012, 27, 4906–4913. [Google Scholar] [CrossRef]
- Choi, H.S.; Choi, S.J. Compact Drive Circuit for Capacitive Wireless Power Transfer System Utilizing Leakage-Enhanced Transformer. J. Electr. Eng. Technol. 2019, 14, 191–199. [Google Scholar] [CrossRef]
- Yusop, Y.; Saat, S.; Nguang, S.K.; Husin, H.; Ghani, Z. Design of Capacitive Power Transfer Using a Class-E Resonant Inverter. J. Power Electron. 2016, 16, 1678–1688. [Google Scholar] [CrossRef] [Green Version]
- Tesla, N. The transmission of electrical energy without wires. Electr. World Eng. 1904, 1, 429–431. [Google Scholar]
- Faraday, M. Experimental Researches in Electricity. Seventh Series. Philos. Trans. R. Soc. Lond. 1834, 124, 77–122. [Google Scholar]
- Joun, G.B.; Cho, B.H. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer. Power Electron. IEEE Trans. 1998, 13, 1013–1022. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Sivaprakasam, M.; Kendir, G.A. Design and analysis of an adaptive trans-cutaneous power telemetry for biomedical implants. IEEE Trans. Circuits Syst. Regul. Pap. 2005, 52, 2109–2117. [Google Scholar] [CrossRef]
- Jow, U.M.; Ghovanloo, M. Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 193–202. [Google Scholar] [CrossRef]
- Papastergiou, K.D.; Macpherson, D.E. An Airborne Radar Power Supply with Contactless Transfer of Energy—Part I: Rotating Transformer. IEEE Trans. Ind. Electron. 2007, 54, 2874–2884. [Google Scholar] [CrossRef]
- Klontz, K.W.; Divan, D.M.; Novotny, D.W.; Lorenz, R. D Contactless power delivery system for mining applications. IEEE Trans. Ind. Appl. 1995, 31, 27–35. [Google Scholar] [CrossRef]
- Heeres, B.J.; Novotny, D.W.; Divan, D.M.; Lorenz, R.D. Contactless underwater power delivery. In Proceedings of the 1994 Power Electronics Specialist Conference, Taipei, Taiwan, 20–25 June 1994; pp. 418–423. [Google Scholar]
- Kojiya, T.; Sato, F.; Matsuki, H.; Sato, T. Construction of non-contacting power feeding system to underwater vehicle utilizing electromagnetic induction. Oceans 2005, 1, 709–712. [Google Scholar]
- Wang, L.; Chen, M.; Xu, D. Increasing Inductive Power Transferring Efficiency for Maglev Emergency Power Supply. In Proceedings of the 37th Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–7. [Google Scholar]
- Pugi, L.; Reatti, A.; Corti, F. Application of Wireless Power Transfer to Railway Parking Functionality: Preliminary Design Considerations with Series-Series and LCC Topologies. J. Adv. Transp. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Pugi, L.; Reatti, A.; Corti, F. Application of modal analysis methods to the design of wireless power transfer systems. Meccanica 2019, 54, 321–331. [Google Scholar] [CrossRef]
- Ye, Z.; Sun, Y.; Dai, X.; Tang, C.; Wang, Z.; Su, Y. Energy Efficiency Analysis of U-Coil Wireless Power Transfer System. IEEE Trans. Power Electron. 2016, 31, 4809–4817. [Google Scholar] [CrossRef]
- Ayachit, A.; Saini, D.K.; Suetsugu, T.; Kazimierczuk, M.K. Three-coil wireless power transfer system using Class-E2 resonant dc-dc con-verter. In Proceedings of the International Telecommunications Energy Conference, Osaka, Japan, 18–22 October 2015; pp. 1116–1119. [Google Scholar]
- Zou, S.; Lu, J.; Mallik, A.; Khaligh, A. Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles. IEEE Trans. Ind. Appl. 2017, 54, 998–1005. [Google Scholar] [CrossRef]
- Nagashima, T.; Wei, X.; Bou, E.; Alarcón, E.; Kazimierczuk, M.K.; Sekiya, H. Analysis and Design of Loosely Inductive Coupled Wireless Power Transfer System Based on Class-E2 DC-DC Converter for Efficiency Enhancement. IEEE Trans. Circuits Syst. 2015, 62, 2781–2791. [Google Scholar] [CrossRef]
- Low, Z.N.; Chinga, R.A.; Tseng, R.; Lin, J. Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System. IEEE Trans. Ind. Electron. 2009, 56, 1801–1812. [Google Scholar] [CrossRef]
- Ayachit, A.; Kazimierczuk, M. Transfer functions of a transformer at different values of coupling coefficient. IET Circuits Devices Syst. 2016, 10, 337–348. [Google Scholar] [CrossRef]
- Kollipara, N.; Kazimierczuk, M.K.; Reatti, A.; Corti, F. Phase Control and Power Optimization of LLC Converter. In Proceedings of the International Symposium on Circuits and Systems, Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Inaba, T.; Koizumi, H.; Sekiya, H. Design of wireless power transfer system with Class E inverter and half-bridge Class DE rectifier at any fixed coupling coefficient. In Proceedings of the 3rd International Future Energy Electronics Conference and ECCE Asia, Kaohsiung, Taiwan, 3–7 June 2017; pp. 185–189. [Google Scholar] [CrossRef]
- Liu, M.; Fu, M.; Ma, C. Parameter Design for a 6.78-MHz Wireless Power Transfer System Based on Analytical Derivation of Class E Current-Driven Rectifier. IEEE Trans. Power Electron. 2016, 31, 4280–4291. [Google Scholar] [CrossRef]
- Nagashima, T.; Inoue, K.; Wei, X.; Bou, E.; Alarcón, E.; Kazimierczuk, M.K.; Sekiya, H. Analytical design procedure for resonant inductively coupled wireless power transfer system with class-E2 DC-DC converter. In Proceedings of the International Symposium on Circuits and Systems, Melbourne, Australia, 1–5 June 2014; pp. 113–116. [Google Scholar] [CrossRef]
- Kazimierczuk, M.K. RF Power Amplifiers, 2nd ed.; Wiley: Chichester, UK, 2014. [Google Scholar]
- Aldhaher, S.; Luk, P.C.; Whidborne, J.F. Tuning Class E Inverters Applied in Inductive Links Using Saturable Reactors. IEEE Trans. Power Electron. 2014, 29, 2969–2978. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczuk, M.K.; Czarkowski, D. Resonant Power Converters, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dai, J.; Ludois, D.C. A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, F.; Hofmann, H.; Mi, C. A loosely coupled capacitive power transfer system with LC compensation circuit topology. In Proceedings of the Energy Conversion Congress and Exposition, Milwaukee, WI, USA, 18–22 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. A Four-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Application. IEEE Trans. Power Electron. 2016, 31, 8541–8551. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A Double-Sided LCLC-Compensated Capacitive Power Transfer System for Electric Vehicle Charging. IEEE Trans. Power Electron. 2015, 30, 6011–6014. [Google Scholar] [CrossRef]
- Nishiyama, H.; Nakamura, M. Form and capacitance of parallel plate capacitor. IEEE Trans. Compon. Packag. Manuf. Tech. A 1994, 17, 447–484. [Google Scholar] [CrossRef] [Green Version]
- Caillierez, A. Study and Implementation of the Transfer of Electrical Energy by Induction: Application to the Electric Road for Moving Vehicle. PhD Thesis, Centrale Supélec, Gif sur Yvette, France, 2015. [Google Scholar]
- ICNIRP—International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields from 1 Hz to 100 kHz. Health Phys. 2010, 99, 818–836, idem from 100 kHz to 300 GHz. Health Phys 118(00):000–000, 2020. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Ibrahim, M. Wireless Inductive Charging for Electrical Vehicles: Electromagnetic Modelling and Interoperability Analysis. Ph.D. Thesis, University of Paris-Sud, Orsay, France, 2014. [Google Scholar]
- Ibrahim, M.; Bernard, L.; Pichon, L.; Razek, A.; Houivet, J.; Cayol, O. Advanced modeling of a 2-kw series–series resonating inductive charger for real electric vehicle. IEEE Trans. Veh. Technol. 2015, 64, 421–430. [Google Scholar] [CrossRef]
- Vaka, R.; Keshri, R.K. Review on Contactless Power Transfer for Electric Vehicle Charging. Energies 2017, 10, 636. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, V.; Pinto, J.G.; Afonso, J.L. Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes. IEEE Trans. Veh. Technol. 2016, 65, 1007–1020. [Google Scholar] [CrossRef] [Green Version]
- Cirimele, V.; Torchio, R.; Villa, J.L.; Freschi, F.; Alotto, P.; Codecasa, L.; Di Rienzo, L. Uncertainty Quantification for SAE J2954 Compliant Static Wireless Charge Components. IEEE Access 2020, 8, 171489–171501. [Google Scholar] [CrossRef]
- Aditya, K.; Williamson, S.S. Design Guidelines to Avoid Bifurcation in a Series–Series Compensated Inductive Power Transfer System. IEEE Trans. Ind. Electron. 2019, 66, 3973–3982. [Google Scholar] [CrossRef]
- Deng, B.; Jia, B.; Zhen Zhang, Z. Dynamic Wireless Charging for Roadway-Powered Electric Vehicles: A Comprehensive Analysis and Design. Prog. Electromagn. Res. C 2016, 69, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cirimele, V. Design and Integration of a Dynamic IPT System for Automotive Applications. PhD Thesis, Université Paris-Saclay and Politecnico di Torino, Torino, Italy, 2017. [Google Scholar]
- Cirimele, V.; Diana, M.; Freschi, F.; Mitolo, M. Inductive Power Transfer for Automotive Applications: State-of-the-Art and Future Trends. IEEE Trans. Ind. Appl. 2018, 54, 4069–4079. [Google Scholar] [CrossRef]
- Kobeissi, A.H.; Bellotti, F.; Berta, R.; De Gloria, A. IoT Grid Alignment Assistant System for Dynamic Wireless Charging of Electric Vehicles. In Proceedings of the Fifth International Conference on Internet of Things: Systems, Management and Security, Valencia, Spain, 15–18 October 2018; pp. 274–279. [Google Scholar] [CrossRef]
- Marmiroli, B.; Dotelli, G.; Spessa, E. Life Cycle Assessment of an On-Road Dynamic Charging Infrastructure. Appl. Sci. 2019, 9, 3117. [Google Scholar] [CrossRef] [Green Version]
- Cirimele, V.; Diana, M.; Bellotti, F.; Berta, R.; El Sayed, N.; Kobeissi, A.; Guglielmi, P.; Ruffo, R.; Khalilian, M.; La Ganga, A.; et al. The Fabric ICT Platform for Managing Wireless Dynamic Charging Road Lanes. IEEE Trans. Veh. Technol. 2020, 69, 2501–2512. [Google Scholar] [CrossRef]
- Shimizu, R.; Kaneko, Y.; Abe, S. A New Hc core transmitter of a contactless power transfer system that is compatible with circular core receivers and H-shaped core receivers. In Proceedings of the 3rd International Electric Drives Production Conference, Nuremberg, Germany, 29–30 October 2013; pp. 1–7. [Google Scholar]
- Zaheer, A.; Hao, H.; Covic, G.A.; Kacprzak, D. Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging. IEEE Trans. Power Electron. 2015, 30, 1937–1955. [Google Scholar] [CrossRef]
- Ibrahim, M.; Bernard, L.; Pichon, L.; Laboure, E.; Razek, A.; Cayol, O.; Ladas, D.; Irving, J. Inductive Charger for Electric Vehicle: Advanced Modeling and Interoperability Analysis. IEEE Trans. Power Electron. 2016, 31, 8096–8114. [Google Scholar] [CrossRef]
- Cirimele, V.; Pichon, L.; Freschi, F. Electromagnetic modeling and performance comparison of different pad-to-pad length ratio for dynamic inductive power transfer. Electronico 2016, 4499–4503. [Google Scholar] [CrossRef]
- Yang, G.; Song, K.; Wei, R.; Huang, X.; Zhang, H.; Zhang, Q.; Zhudoi, C. Interoperability Improvement for Wireless Electric Vehicle Charging System Using Adaptive Phase-Control Transmitter. IEEE Access 2019, 7, 41365–41379. [Google Scholar] [CrossRef]
- El Moucary, C.; Mendes, E.; Razek, A. Decoupled Direct Control for PWM Inverter-Fed Induction Motor Drives. IEEE Trans. Ind. Appl. 2002, 38, 1307–1315. [Google Scholar] [CrossRef]
- Ouchetto, O.; Zouhdi, S.; Bossavit, A.; Griso, G.; Miara, B.; Razek, A. Homogenization of structured electromagnetic materials and metamaterials. J. Mater. Process. Technol. 2007, 181, 225–229. [Google Scholar] [CrossRef]
- Ciattoni, A.; Carlo Rizza, C. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality. Phys. Rev. 2015, 184207. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.; Margueron, X.; Le Menach, Y.; Le Moigne, P. Numerical modelling of PCB planar inductors: Impact of 3D modelling on high-frequency copper loss evaluation. IET Power Electron. 2017, 10, 1966–1974. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, M.; Zhu, S.; Zhang, J. Coupled Electromagnetic-Thermal-Mechanical Analysis for Accurate Prediction of Dual-Mechanical-Port Machine Performance. IEEE Trans. Ind. Appl. 2012, 48, 2240–2248. [Google Scholar] [CrossRef]
- Ren, Z.; Razek, A. A coupled electromagnetic-mechanical model for thin conductive plate deflection analysis. IEEE Trans. Magn. 1990, 26, 1650–1652. [Google Scholar] [CrossRef]
- Vese, I.; Marignetti, F.; Radulescu, M.M. Multiphysics Approach to Numerical Modeling of a Permanent-Magnet Tubular Linear Motor. IEEE Trans. Ind. Electron. 2010, 57, 320–326. [Google Scholar] [CrossRef]
- Semidey, S.A.; Duan, Y.; Mayor, J.R.; Harley, R.G.; Habetler, T.G. Optimal Electromagnetic-Thermo-Mechanical Integrated Design Candidate Search and Selection for Surface-Mount Permanent-Magnet Machines Considering Load Profiles. IEEE Trans. Ind. Appl. 2011, 47, 2460–2468. [Google Scholar] [CrossRef]
- Ren, Z.; Razek, A. Comparison of some 3D eddy current formulations in dual systems. IEEE Trans. Magn. 2000, 36, 751–755. [Google Scholar] [CrossRef]
- Ying, P.; Jiangjun, R.; Yu, Z.; Yan, G. A Composite Grid Method for Moving Conductor Eddy-Current Problem. IEEE Trans. Magn. 2007, 43, 3259–3265. [Google Scholar] [CrossRef]
- Rapetti, F.; Maday, Y.; Bouillault, F.; Razek, A. Eddy-current calculations in three-dimensional moving structures. IEEE Trans. Magn. 2002, 38, 613–616. [Google Scholar] [CrossRef]
- Razek, A. The Observable, the Theory, and Prospective Revised Models for Societal Concerns. Athens J. Sci. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Jiao, D.; Jin, J.-M. An effective algorithm for implementing perfectly matched layers in time-domain finite-element simulation of open-region EM problems. IEEE Trans. Antennas Propag. 2002, 50, 1615–1623. [Google Scholar] [CrossRef]
- Carpes, W.P.; Pichon, L.; Razek, A. A 3D finite element method for the modelling of bounded and unbounded electromagnetic problems in the time domain. Int. J. Numer. Model. Electron. Netw. Devices Fields 2000, 13, 527–540. [Google Scholar] [CrossRef]
- Jiao, D.; Jin, J.M.; Michielssen, E.; Riley, D.J. Time-domain finite-element simulation of three-dimensional scattering and radiation problems using perfectly matched layers. IEEE Trans. Antennas Propag. 2003, 51, 296–305. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, R.; Zhan, Q.; Liu, Q.H. 3-D Implicit–Explicit Hybrid Finite Difference/Spectral Element/Finite Element Time Domain Method without a Buffer Zone. IEEE Trans. Antennas Propag. 2019, 67, 5469–5476. [Google Scholar] [CrossRef]
- Razek, A. (2019) Assessment of Supervised Drug Release in Cordial Embedded Therapeutics. Athens J. Technol. Eng. 2019, 6, 77–91. [Google Scholar]
- Vaananen, J. Circuit theoretical approach to couple two-dimensional finite element models with external circuit equations. IEEE Trans. Magn. 1996, 32, 400–410. [Google Scholar] [CrossRef]
- Jabbar, M.A.; Liu, Z.; Dong, J. Time-stepping finite-element analysis for the dynamic performance of a permanent magnet synchronous motor. IEEE Trans. Magn. 2003, 39, 2621–2623. [Google Scholar] [CrossRef]
- Piriou, F.; Razek, A. Numerical simulation of a nonconventional alternator connected to a rectifier. IEEE Trans. Energy Convers. 1990, 5, 512–518. [Google Scholar] [CrossRef]
- Behjat, V.; Vahedi, A. Analysis of internal winding short circuit faults in power transformers using transient finite element method coupling with external circuit equations. Int. J. Numer. Model. 2013, 26, 425–442. [Google Scholar] [CrossRef]
- Harris, L.R.; Zhadobov, M.; Chahat, N.; Sauleau, R. Electromagnetic dosimetry for adult and child models within a car: Multi-exposure scenarios. Int. J. Microw. Wireless Technol. 2011, 3, 707–715. [Google Scholar] [CrossRef]
- Gjonaj, E.; Bartsch, M.; Clemens, M.; Schupp, S.; Weiland, T. (2002) High-resolution human anatomy models for advanced electromagnetic field computations. IEEE Trans. Magn. 2002, 38, 357–360. [Google Scholar] [CrossRef]
- Steiner, T.; De Gersem, H.; Clemens, M.; Weiland, T. Local grid refinement for low-frequency current computations in 3-D human anatomy models. IEEE Trans. Magn. 2006, 42, 1371–1374. [Google Scholar]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- IEEE. Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz; C95.1-2019/Cor 2-2020 (Corrigenda 2); IEEE: New York, NY, USA, 2019. [Google Scholar]
- Ding, P.; Bernard, L.; Pichon, L.; Razek, A. Evaluation of Electromagnetic Fields in Human Body Exposed to Wireless Inductive Charging System. IEEE Trans. Magn. 2014, 50, 1037–1040. [Google Scholar] [CrossRef]
- Wen, F.; Huang, X. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems. Int. J. Environ. Res. Public Health 2017, 14, 157. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Kang, J.; Wang, Y. Electromagnetic Safety Evaluation and Protection Methods for a Wireless Charging System in an Electric Vehicle. IEEE Trans. Electromagn. Compat. 2019, 61, 1913–1925. [Google Scholar] [CrossRef]
- Mohammad, M.; Wodajo, E.T.; Choi, S.; Elbuluk, M.E. Modeling and Design of Passive Shield to Limit EMF Emission and to Minimize Shield Loss in Unipolar Wireless Charging System for EV. IEEE Trans. Power Electron. 2019, 34, 12235–12245. [Google Scholar] [CrossRef]
- Razek, A.; Pichon, L.; Kameni, A.; Makong, L.; Rasm, S. Evaluation of Human Exposure owing to Wireless Power Transfer Systems in Electric Vehicles. Athens J. Technol. Eng. 2019, 6, 239–258. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razek, A. Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles. Appl. Sci. 2021, 11, 3221. https://doi.org/10.3390/app11073221
Razek A. Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles. Applied Sciences. 2021; 11(7):3221. https://doi.org/10.3390/app11073221
Chicago/Turabian StyleRazek, Adel. 2021. "Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles" Applied Sciences 11, no. 7: 3221. https://doi.org/10.3390/app11073221
APA StyleRazek, A. (2021). Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles. Applied Sciences, 11(7), 3221. https://doi.org/10.3390/app11073221