Study of Rock Mass Rating (RMR) and Geological Strength Index (GSI) Correlations in Granite, Siltstone, Sandstone and Quartzite Rock Masses
Abstract
:1. Introduction
2. Research Methodology and Research Materials
Determination of GSI and RMR89
- R1—uniaxial compressive strength (0–15),
- R2—rock quality designation, RQD (3−20),
- R3—average joint space (5–20),
- R4—joint wall conditions (0−30), and
- R5—water. In the original definition, R5 must be defined as dry (i.e., 15) for assessing drill core.
3. Geological Setting and Database
3.1. Geological Setting and Data of Hungarian Nuclear Waste Repository
3.2. Geological Setting and Data of Telfer Gold Mine
4. Results and Discussion
4.1. Comparing the Calculated GSI Values to the Chart Values
4.2. Comparing the RMR Value to the GSI Value
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palmström, A. RMi—A Rock Mass Characterization System for Rock Engineering Purposes. Ph.D. Thesis, University of Oslo, Oslo, Norway, 1995; p. 400. [Google Scholar]
- Deisman, N.; Chalaturnyk, R.; Mas, I.D.; Darcel, C. Geomechanical characterization of coal seam reservoirs: The SRM approach. In Proceedings of the Asia Pacific Coalbed Methane Symposium, Brisbane, Australia, 22–24 September 2008; pp. 1–10. [Google Scholar]
- Kovács, L.; Mészáros, E.; Somodi, G. Rock Mechanical and Geotechnical Characterization of a Granitic Formation Hosting the Hungarian National Radioactive Waste Repository at Bátaapáti. In Engineering Geology for Society and Territory, Volume 6: Applied Geology for Major Engineering Projects; Springer: Berlin/Heidelberg, Germany, 2015; pp. 915–918. [Google Scholar]
- Tóth, T.M. Fracture network characterization using 1D and 2D data of the Mórágy Granite body, southern Hungary. J. Struct. Geol. 2018, 113, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Hoek, E. Putting numbers to geology—An engineer’s viewpoint. Quart. J. Eng. Geol. Hydrogeol. 1999, 32, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Protodyakonov, M.M. Rock Pressure on Mine Support (Theory of Mine Support); Tipografiya Gubernskogo Zemstva: Yekaterinoslav, Russia, 1907; pp. 23–45. [Google Scholar]
- Terzaghi, K. Rock defects and loads on tunnel supports. In Rock Tunnelling with Steel Supports; Proctor, R.V., White, T.L., Eds.; Commercial Shearing and Stamping Company: Youngstown, OH, USA, 1946; pp. 17–99. [Google Scholar]
- Deere, D.U.; Hedron, A.J.; Patton, F.D.; Cording, E.J. Design of surface and near-surface construction in rock. In Failure and Breakage of Rock, Proceedings of the 8th US Symposium on Rock Mechanics; Fairhurst, C., Ed.; Society of Mining Engineers of AIME: New York, NY, USA, 1967; pp. 237–302. [Google Scholar]
- Wickham, G.E.; Tiedemann, H.R.; Skinner, E.H. Support determinations based on geologic predictions. In Proceedings of the North American Rapid Excavation and Tunnelling Conference, Chicago, IL, USA, 5–7 June 1972; pp. 43–64. [Google Scholar]
- Bieniawski, Z.T. Engineering Classification of Jointed Rock Masses; South African Institute of Civil Engineers: Johannesburg, South Africa, 1973; Volume 15, pp. 333–343. [Google Scholar]
- Barton, N.; Lien, R.; Lunde, J. Engineering classification of rock masses for the design of rock support. Rock Mech. 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Hoek, E. Strength of rock and rock masses. ISRM News J. 1994, 2, 4–16. [Google Scholar]
- Palmstrom, A. Characterizing rock masses by the RMi for use in practical rock engineering, Part 2: Some practical applications of the Rock Mass index (RMi). Tunn. Undergr. Space Technol. 1996, 11, 287–303. [Google Scholar] [CrossRef]
- Tzamos, S.; Sofianos, A.I. A correlation of four rock mass classification systems through their fabric indices. Int. J. Rock Mech. Min. Sci. 2007, 44, 477–495. [Google Scholar] [CrossRef]
- Aydan, Ö.; Ulusay, R.; Tokashiki, N. A new rock mass quality rating system: Rock Mass Quality Rating (RMQR) and its applications to the estimation of geomechanical characteristics of rock masses. Rock Mech. Rock Eng. 2014, 47, 1255–1276. [Google Scholar] [CrossRef]
- Palmström, A. Combining the RMR, Q, and RMi classification systems. Tunn. Undergr. Space Technol. 2009, 24, 491–492. [Google Scholar] [CrossRef]
- Ranasooriya, J.; Nikraz, H. Reliability of the linear correlation of Rock Mass Rating (RMR) and Tunnelling Quality Index (Q). Aust. Geomech. 2009, 44, 47–54. [Google Scholar]
- Fernández-Gutierrez, J.D.; Pérez-Acebo, H.; Mulone-Andere, D. Correlation between Bieniawski’s RMR index and Barton’s Q index in fine-grained sedimentary rock formations. Inf. Construcción 2017, 69, e205. [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classification; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Celada, B.; Tardáguila, I.; Varona, P.; Rodríguez, A.; Bieniawski, Z.T. Innovating Tunnel Design by an Improved Experience-based RMR System. In Proceedings of the World Tunnel Congress 2014—Tunnels for a Better Life, Foz do Iguaçu, Brazil, 9–15 May 2014. [Google Scholar]
- Hoek, E.; Kaiser, P.K.; Bawden, W.F. Support of Underground Excavations in Hard Rock; AA Balkema: Rotterdam, The Netherlands, 1995. [Google Scholar]
- Hoek, E.; Brown, E.T. The Hoek-Brown Failure criterion and GSI. J. Rock Mech. Geotechnol. Eng. 2019, 11, 445–463. [Google Scholar] [CrossRef]
- Vásárhelyi, B.; Kovács, D. Empirical methods of calculating the mechanical parameters of the rock mass. Period. Polytech. Civil Eng. 2017, 61, 39–50. [Google Scholar]
- Hussian, S.; Mohammad, N.; Rehman, Z.U.; Khan, N.M.; Shahzada, K.; Ali, S.; Tahir, M.; Raza, S.; Sherin, S. Review of the Geological Strength Index (GSI) as an Empirical Classification and Rock Mass Property Estimation Tool: Origination, Modifications, Applications, and Limitations. Adv. Civil. Eng. 2020, 6471837. [Google Scholar] [CrossRef]
- Ván, P.; Vásárhelyi, B. Sensitivity analysis of GSI based mechanical parameters of the rock mass. Period. Polytech. Civil Eng. 2014, 58, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Vásárhelyi, B.; Somodi, G.; Krupa, Á.; Kovács, L. Determining the Geological Strength Index, GSI using different methods. In Proceedings of the 2016 ISRM International Symposium (EUROCK2016), Ürgüp, Turkey, 29–31 August 2016; pp. 1049–1054. [Google Scholar]
- Bieniawski, Z.T. Rock mass classification in rock engineering. In Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg, South Africa, 1–5 November 1976; pp. 97–106. [Google Scholar]
- Rutledge, J.C.; Preston, R.L. Experience with engineering classifications of rock. In Proceedings of the International Tunnel Symposium, Tokyo, Japan, 29 May–2 June 1978; pp. A3.1–A3.7. [Google Scholar]
- Moreno Tallon, E. Comparison and application of geomechanics classification schemes in tunnel construction. In Proceedings of the Tunnelling ‘82—3rd International Symposium, Brighton, UK, 7–11 June 1982; pp. 241–246. [Google Scholar]
- Sayeed, I.; Khanna, R. Empirical correlation between RMR and Q systems of rock mass classification derived from Lesser Himalayan and Central crystalline rocks. In Proceedings of the International Conference on “Engineering Geology in New Millenium”, New Delhi, India, 27–29 October 2015. [Google Scholar]
- Castro-Fresno, D. Correlation between Bieniawski’s RMR and Barton’s Q index in low-quality soils. Rev. Construcción 2010, 9, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Campos, L.A.; Ferreira Filho, F.A.; Vieira Costa, T.A.; Gomes Marques, E.A. New GSI correlations with different RMR adjustments for an eastern mine of the Quadrilatero Ferrífero. J. S. Am. Earth Sci. 2020, 102, 102647. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Barton, N. The influence of joint properties in modelling jointed rock masses. Keynote lecture. In Proceedings of the 8th ISRM Congress, Tokyo, Japan, 25–29 September 1995; Volume 3, pp. 1023–1032. [Google Scholar]
- Hoek, E.; Carter, T.G.; Diederichs, M.S. Quantification of the Geological Strength Index Chart. In Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium ARMA, San Francisco, CA, USA, 23–26 June 2013; pp. 13–672. [Google Scholar]
- Cai, M.; Kaiser, P.K. Visualization of rock mass classification systems. Geotech. Geol. Eng. 2006, 24, 1089–1102. [Google Scholar] [CrossRef]
- Russo, G. A new rational method for calculating the GSI. Tunn. Undergr. Space Technol. 2009, 24, 103–111. [Google Scholar] [CrossRef]
- Morelli, G.L. Variability of the GSI index estimated from different quantitative methods. Geotech. Geol. Eng. 2015, 33, 983–995. [Google Scholar] [CrossRef]
- Sari, M. Incorporating variability and/or uncertainty of rock mass properties into GSI and RMi systems using Monte Carlo method. In Engineering Geology for Society and Territory-Volume 6; Lollino, G., Giordan, D., Thuro, K., Carranza-Torres, C., Wu, F., Marinos, P., Delgado, C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 843–849. [Google Scholar]
- Somodi, G.; Krupa, Á.; Kovács, L.; Vásárhelyi, B. Comparison of different calculation methods of Geological Strength Index (GSI) is a specific underground site. Eng. Geol. 2018, 243, 50–58. [Google Scholar] [CrossRef]
- Coşar, S. Application of Rock Mass Classification Systems for Future Support Design of the Dim Tunnel Near Alanya. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2014. [Google Scholar]
- Irvani, I.; Wilopo, W.; Karnawati, D. Determination of nuclear power plant site in west bangka based on rock mass rating and geological strength index. J. Appl. Geol. 2013, 5, 78–86. [Google Scholar]
- Singh, J.L.; Tamrakar, N.K. Rock mass rating and geological strength index of rock masses of Thopal-Malekhu river areas, Central Nepal lesser Himalaya. Bull. Dept. Geol. 2013, 16, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Ali, W.; Mohammad, N.; Tahir, M. Rock mass characterization for diversion tunnels at Diamer Basha dam, Pakistan—A design perspective. Int. J. Sci. Eng. Technol. 2014, 3, 1292–1296. [Google Scholar]
- Zhang, Q.; Huang, X.; Zhu, H.; Li, J. Quantitative assessments of the correlations between rock mass rating (RMR) and geological strength index (GSI). Tunn. Undergr. Space Technol. 2018, 83, 73–81. [Google Scholar] [CrossRef]
- Siddique, T.; Khan, E.A. Stability appraisal of road cut slopes along a strategic transportation route in the Himalayas, Uttarakhand, India. SN Appl. Sci. 2019, 1, 409. [Google Scholar] [CrossRef] [Green Version]
- Osgoui, R.; Ünal, E. Rock reinforcement design for unstable tunnels originally excavated in very poor rock mass. In Proceedings of the International World Tunnel Congress and the 31st ITA General Assembly, Istanbul, Turkey, 7–12 May 2005; pp. 291–296. [Google Scholar]
- Deák, F.; Kovács, L.; Vásárhelyi, B. Geotechnical rock mass documentation in the Bátaapáti radioactive waste repository. Centr. Eur. Geol. 2014, 57, 197–211. [Google Scholar] [CrossRef] [Green Version]
- Somodi, G.; Krupa, Á.; Kovács, L.; Szujó, G. Reviewing length, density, and orientation data of fractures in a granitic rock mass. In Proceedings of the 2018 ISRM European Rock Mechanics Symposium (EUROCK2018), St. Petersburg, Russia, 22–27 May 2018; Volume 2, pp. 439–445. [Google Scholar]
- Kovács, L.; Kádár, B.; Krupa, Á.; Mészáros, E.; Pöszmet, T.; Rátkai, O.; Somodi, G.; Amigyáné Reisz, K.; Vásárhelyi, B. The Revision and Upgrade of Geotechnical Interpretative Report; Manuscript; RHKK-028/16; Puram (RHK Kft.): Budapest, Hungary, 2016. (In Hungarian) [Google Scholar]
- Benedek, K.; Bőthi, Z.; Mező Gy Molnár, P. Compartmented flow at the Bátaapáti site in Hungary. Hydrogeol. J. 2009, 17, 1219–1232. [Google Scholar] [CrossRef]
- Benedek, K.; Molnár, P. Combining hydrogeological and structural data: A conceptualization of a fracture system. Eng. Geol. 2013, 163, 1–10. [Google Scholar] [CrossRef]
- Tóth, T.M. Determination of geometric parameters of fracture networks using 1D data. J. Struct. Geol. 2010, 32, 878–885. [Google Scholar] [CrossRef]
- Bar, N.; Weekes, G. Directional Shear Strength Models in 2D and 3D Limit Equilibrium Analyses to Assess the Stability of Anisotropic Rock Slopes in the Pilbara Region of Western Australia. Aust. Geomech. 2017, 52, 91–104. [Google Scholar]
- Bar, N.; Yacoub, T.E.; McQuillan, A. Analysis of a large open pit mine in Western Australia using finite element and limit equilibrium methods. In Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium ARMA, New York, NY, USA, 23–26 June 2019. [Google Scholar]
a | b | R2 | Rock Type | Ref. | |
---|---|---|---|---|---|
1 | 1.00 | −5 | various projects | Hoek et al. [22] | |
2 | 0.42 | 23.08 | 0.44 | schist and sedimentary rocks | Cosar [41] |
3 | 0.739 | 12.097 | 0.759 | sandstone | Irvani et al. [42] |
4 | 0.7394 | −4.3349 | 0.57 | metamorphic | Singh and Tamrakar [43] |
5 | 0.9932 | −4.913 | 0.84 | gabbro, ultrabasic | Ali et al. [44] |
6 | 1.2092 | −18.6143 | various projects | Zhang et al. [45] | |
7 | 1.265 | −21.49 | various types of rocks | Siddique and Khan [46] |
a | b | R2 | Rock Type | Ref. |
---|---|---|---|---|
0.793 | 2.010 | 0.736 | granitic rocks | Bátaapáti |
0.876 | 0.935 | 0.876 | siltstones, sandstones and quartzites | Telfer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somodi, G.; Bar, N.; Kovács, L.; Arrieta, M.; Török, Á.; Vásárhelyi, B. Study of Rock Mass Rating (RMR) and Geological Strength Index (GSI) Correlations in Granite, Siltstone, Sandstone and Quartzite Rock Masses. Appl. Sci. 2021, 11, 3351. https://doi.org/10.3390/app11083351
Somodi G, Bar N, Kovács L, Arrieta M, Török Á, Vásárhelyi B. Study of Rock Mass Rating (RMR) and Geological Strength Index (GSI) Correlations in Granite, Siltstone, Sandstone and Quartzite Rock Masses. Applied Sciences. 2021; 11(8):3351. https://doi.org/10.3390/app11083351
Chicago/Turabian StyleSomodi, Gabor, Neil Bar, László Kovács, Marco Arrieta, Ákos Török, and Balázs Vásárhelyi. 2021. "Study of Rock Mass Rating (RMR) and Geological Strength Index (GSI) Correlations in Granite, Siltstone, Sandstone and Quartzite Rock Masses" Applied Sciences 11, no. 8: 3351. https://doi.org/10.3390/app11083351
APA StyleSomodi, G., Bar, N., Kovács, L., Arrieta, M., Török, Á., & Vásárhelyi, B. (2021). Study of Rock Mass Rating (RMR) and Geological Strength Index (GSI) Correlations in Granite, Siltstone, Sandstone and Quartzite Rock Masses. Applied Sciences, 11(8), 3351. https://doi.org/10.3390/app11083351