Performance Evaluation of rPPG Approaches with and without the Region-of-Interest Localization Step
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sets
2.2. Studied Approaches with and without ROI Localization Step
- Full Video Pulse Extraction [16] (hereinafter FVP), which is by default combined with the POS rPPG algorithm.
- In the VK approach, we reduced the width of the detected ROI to 60% of its original width [7].
- In VK-RGBHCbCr and VK-Conaire, we kept the original size of the detected ROI.
2.3. Applied rPPG Algorithms for Pulse Waveform Signal Extraction
2.4. Performance Evaluation of the Studied Approaches with and without ROI Localization Step
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2SR | Spatial Subspace Rotation rPPG algorithm |
ANOVA | analysis of variance |
BPM | beats per minute |
CHROM | chrominance-based rPPG algorithm |
CSK | Circulant Structure with Kernels |
ECG | electrocardiography |
FastICA | a fast algorithm for Independent Component Analysis invented by Aapo |
Hyvärinen at Helsinki University of Technology | |
FVP | Full Video Pulse Extraction rPPG algorithm |
KLT | Kanade-Lucas-Tomasi tracker |
LGI-PPGI-FVD | LGI-PPGI-Face-Video-Database |
MAE | mean absolute error |
MSAC | M-estimator Sample and Consensus |
PBDTrPPG | Public Benchmark Dataset for Testing rPPG Algorithm Performance |
POS | Plane-Orthogonal-to-Skin rPPG algorithm |
PR | pulse rate |
PURE | Pulse Rate Detection Dataset |
RANSAC | Random Sample Consensus |
RGB | red-green-blue color space |
RGB-H-CbCr | color space consisting of red-green-blue, hue (from HSV color space), |
blue-difference chroma component and red-difference chroma component | |
(both from YCbCr color space) | |
RMSE | root mean square error |
ROI | region of interest |
rPPG | remote photoplethysmography |
SelfRPPG | private rPPG data set prepared by Zhao et al. [8] |
SNR | signal-to-noise ratio |
STAPLE | Sum of Template and Pixel-Wise Learners |
UBFC-RPPG | Univ. Bourgogne Franche-Comté Remote Photoplethysmography data set |
VK | Viola-Jones combined with ROI width reduction and Kanade-Lucas-Tomasi tracker |
VK-Conaire | Viola-Jones combined with skin detector based on the maximization of mutual |
information and Kanade-Lucas-Tomasi tracker | |
VK-LMK | Viola-Jones combined with landmarks detection and Kanade-Lucas-Tomasi tracker |
VK-RGBHCbCr | Viola-Jones combined with RGB-H-CbCr skin-color segmentation and |
Kanade-Lucas-Tomasi tracke | |
YCbCr | color space with the luma component (Y), blue-difference chroma component (Cb) |
and red-difference chroma component (Cr) |
References
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Thakor, N. Photoplethysmography revisited: From contact to noncontact, from point to imaging. IEEE Trans. Biomed. Eng. 2015, 63, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Unakafov, A.M. Pulse rate estimation using imaging photoplethysmography: Generic framework and comparison of methods on a publicly available dataset. Biomed. Phys. Eng. Express 2018, 4, 045001. [Google Scholar] [CrossRef]
- Takano, C.; Ohta, Y. Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 2007, 29, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Stuijk, S.; de Haan, G. Living-skin classification via remote-PPG. IEEE Trans. Biomed. Eng. 2017, 64, 2781–2792. [Google Scholar] [CrossRef]
- Bobbia, S.; Macwan, R.; Benezeth, Y.; Mansouri, A.; Dubois, J. Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognit. Lett. 2019, 124, 82–90. [Google Scholar] [CrossRef]
- Poh, M.Z.; McDuff, D.J.; Picard, R.W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 2010, 18, 10762–10774. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Mei, P.; Xu, S.; Li, Y.; Feng, Y. Performance evaluation of visual object detection and tracking algorithms used in remote photoplethysmography. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019. [Google Scholar] [CrossRef]
- Mestha, L.K.; Kyal, S.; Xu, B.; Lewis, L.E.; Kumar, V. Towards continuous monitoring of pulse rate in neonatal intensive care unit with a webcam. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3817–3820. [Google Scholar] [CrossRef]
- Kovac, J.; Peer, P.; Solina, F. Human Skin Color Clustering for Face Detection; IEEE: New York, NY, USA, 2003; Volume 2. [Google Scholar] [CrossRef]
- bin Abdul Rahman, N.A.; Wei, K.C.; See, J. RGB-H-CbCr Skin Colour Model for Human Face Detection; Faculty of Information Technology, Multimedia University: Nairobi, Kenya, 2007; Volume 4. [Google Scholar]
- Mahmoud, T.M. A new fast skin color detection technique. World Acad. Sci. Eng. Technol. 2008, 43, 501–505. [Google Scholar] [CrossRef]
- Asthana, A.; Zafeiriou, S.; Cheng, S.; Pantic, M. Robust discriminative response map fitting with constrained local models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3444–3451. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, V.; Sullivan, J. One millisecond face alignment with an ensemble of regression trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1867–1874. [Google Scholar] [CrossRef]
- Conaire, C.O.; O’Connor, N.E.; Smeaton, A.F. Detector adaptation by maximising agreement between independent data sources. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; den Brinker, A.C.; De Haan, G. Full video pulse extraction. Biomed. Opt. Express 2018, 9, 3898–3914. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; den Brinker, A.C.; De Haan, G. Single-element remote-PPG. IEEE Trans. Biomed. Eng. 2018, 66, 2032–2043. [Google Scholar] [CrossRef]
- Li, P.; Benezeth, Y.; Nakamura, K.; Gomez, R.; Li, C.; Yang, F. Comparison of region of interest segmentation methods for video-based heart rate measurements. In Proceedings of the 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 29–31 October 2018; pp. 143–146. [Google Scholar] [CrossRef] [Green Version]
- Fouad, R.; Omer, O.A.; Aly, M.H. Optimizing remote photoplethysmography using adaptive skin segmentation for real-time heart rate monitoring. IEEE Access 2019, 7, 76513–76528. [Google Scholar] [CrossRef]
- Li, P.; Benezeth, Y.; Nakamura, K.; Gomez, R.; Yang, F. Model-based Region of Interest Segmentation for Remote Photoplethysmography. In Proceedings of the 14th International Conference on Computer Vision Theory and Applications, Prague, Czech Republic, 25–27 February 2019. [Google Scholar] [CrossRef]
- De Haan, G.; Jeanne, V. Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, G.; Lin, X.; Yan, H. Skin segmentation based on graph cuts. Tsinghua Sci. Technol. 2009, 14, 478–486. [Google Scholar] [CrossRef]
- Liao, S.; Jain, A.K.; Li, S.Z. A fast and accurate unconstrained face detector. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Bradski, G.R. Real time face and object tracking as a component of a perceptual user interface. In Proceedings of the Fourth IEEE Workshop on Applications of Computer Vision. WACV’98 (Cat. No. 98EX201), Princeton, NJ, USA, 19–21 October 1998; pp. 214–219. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1, p. I. [Google Scholar] [CrossRef]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the IJCAI’81, 7th International Joint Conference on Artificial Intelligence—Volume 2, Vancouver, BC, Canada, 24–28 August 1981. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 702–715. [Google Scholar] [CrossRef]
- Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H. Staple: Complementary learners for real-time tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1401–1409. [Google Scholar] [CrossRef] [Green Version]
- Stricker, R.; Müller, S.; Gross, H.M. Non-contact video-based pulse rate measurement on a mobile service robot. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 1056–1062. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 2016, 64, 1479–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woyczyk, A.; Fleischhauer, V.; Zaunseder, S. Skin Segmentation using Active Contours and Gaussian Mixture Models for Heart Rate Detection in Videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 312–313. [Google Scholar] [CrossRef]
- Jones, M.J.; Rehg, J.M. Statistical color models with application to skin detection. Int. J. Comput. Vis. 2002, 46, 81–96. [Google Scholar] [CrossRef]
- Wang, W.; Stuijk, S.; De Haan, G. A novel algorithm for remote photoplethysmography: Spatial subspace rotation. IEEE Trans. Biomed. Eng. 2015, 63, 1974–1984. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, W.F.C.; Lakens, D. Public Benchmark Dataset for Testing rPPG Algorithm Performance; 4TU.Centre for Research Data: The Hague, The Netherlands, 2019. [Google Scholar]
- Pilz, C.S.; Zaunseder, S.; Krajewski, J.; Blazek, V. Local group invariance for heart rate estimation from face videos in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1254–1262. [Google Scholar] [CrossRef]
- Shi, J. Good features to track. In Proceedings of the 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhao, G.; Pietikainen, M. Remote heart rate measurement from face videos under realistic situations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 4264–4271. [Google Scholar] [CrossRef]
- Rabin, J.; Delon, J.; Gousseau, Y.; Moisan, L. MAC-RANSAC: A robust algorithm for the recognition of multiple objects. In Proceedings of the Fifth International Symposium on 3D Data Processing, Visualization and Transmission (3DPTV 2010), Paris, France, 17–20 May 2010; p. 051. [Google Scholar]
- Kamshilin, A.A.; Nippolainen, E.; Sidorov, I.S.; Vasilev, P.V.; Erofeev, N.P.; Podolian, N.P.; Romashko, R.V. A new look at the essence of the imaging photoplethysmography. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mironenko, Y.; Kalinin, K.; Kopeliovich, M.; Petrushan, M. Remote Photoplethysmography: Rarely Considered Factors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 296–297. [Google Scholar] [CrossRef]
- Finžgar, M.; Podržaj, P. Feasibility of assessing ultra-short-term pulse rate variability from video recordings. PeerJ 2020, 8, e8342. [Google Scholar] [CrossRef] [Green Version]
- van der Kooij, K.M.; Naber, M. An open-source remote heart rate imaging method with practical apparatus and algorithms. Behav. Res. Methods 2019, 51, 2106–2119. [Google Scholar] [CrossRef]
- Kumar, M.; Veeraraghavan, A.; Sabharwal, A. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomed. Opt. Express 2015, 6, 1565–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Stuijk, S.; De Haan, G. Exploiting spatial redundancy of image sensor for motion robust rPPG. IEEE Trans. Biomed. Eng. 2014, 62, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Speth, J.; Vance, N.; Flynn, P.; Bowyer, K.; Czajka, A. Remote Pulse Estimation in the Presence of Face Masks. arXiv 2021, arXiv:2101.04096. [Google Scholar]
- Rubins, U.; Miscuks, A.; Lange, M. Simple and convenient remote photoplethysmography system for monitoring regional anesthesia effectiveness. In EMBEC & NBC 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 378–381. [Google Scholar] [CrossRef]
- McDuff, D.; Nishidate, I.; Nakano, K.; Haneishi, H.; Aoki, Y.; Tanabe, C.; Niizeki, K.; Aizu, Y. Non-contact imaging of peripheral hemodynamics during cognitive and psychological stressors. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
Issue/Data Set | PURE | PBDTrPPG | LGI-PPGI-FVD |
---|---|---|---|
no detected face on the first frame | / | / | alex_gym, angelo_gym, david_gym |
KLT tracker failure | / | / | felix_gym |
no skin pixels detected (using VK-RGBHCbCr) | 03-01, 03-04, 04-02, 05-04 | P3LC1 | harun_gym |
no skin pixels detected (using VK-Conaire) | / | / | harun_gym |
VK | VK-LMK | VK-RGBHCbCr | VK-Conaire | |
---|---|---|---|---|
PURE | 19,063 ± 3581 | 9114 ± 1591 | 13,407 ± 5339 | 19,984 ± 5252 |
PBDTrPPG | 28,849 ± 14,196 | 12,731 ± 4498 | 19,514 ± 16,015 | 19,128 ± 9699 |
LGI-PPGI-FVD | 38,060 ± 13,863 | 14,962 ± 7106 | 32,916 ± 12,141 | 40,550 ± 15,970 |
VK | VK-LMK | VK-RGBHCbCr | VK-Conaire | FVP | |||||
---|---|---|---|---|---|---|---|---|---|
SB | 2SR | SB | 2SR | SB | 2SR | SB | 2SR | SB | |
PURE | |||||||||
resting | 1.08 ± 0.71 (10) | 1.11 ± 0.72 (10) | 1.09 ± 0.74 (10) | 1.18 ± 0.72 (10) | 1.31 ± 0.91 (9) | 1.5 ± 1.29 (9) | 1.09 ± 0.75 (10) | 1.13 ± 0.78 (10) | 1.48 ± 0.86 (10) |
talking | 4.09 ± 3.68 (9) | 8.19 ± 15.62 (9) | 11.08 ± 15.72 (9) | 14.54 ± 20.24 (9) | 8.68 ± 16.24 (8) | 9.06 ± 17.59 (8) | 8.48 ± 9.5 (9) | 12.7 ± 16.58 (9) | 7.95 ± 9.32 (9) |
head translation | 1.07 ± 0.64 (20) | 1.14 ± 0.75 (20) | 1.13 ± 0.83 (20) | 1.20 ± 0.87 (20) | 1.13 ± 0.74 (18) | 1.28 ± 0.8 (18) | 1.14 ± 0.71 (20) | 2.98 ± 4.18 (20) | 3.96 ± 4.97 (20) |
head rotation | 0.88 ± 0.7 (20) | 2.77 ± 3.94 (20) | 1.06 ± 0.97 (20) | 5.53 ± 6.62 (20) | 0.84 ± 0.62 (20) | 5.41 ± 12.43 (20) | 3.08 ± 6.29 (20) | 9.45 ± 17.76 (20) | 2.47 ± 5.73 (20) |
PBDTrPPG | |||||||||
LC1 ( lux) | 25.57 ± 12.25 (3) | 25.23 ± 13.09 (3) | 23.27±12.02 (3) | 22.92 ± 11.4 (3) | 19.66 ± 11.69 (2) | 19.85 ± 12.71 (2) | 24.56 ± 12.37 (3) | 23.89 ± 12.15 (3) | 52.28 ± 6.65 (3) |
LC2 ( lux) | 22.69 ± 13.27 (3) | 25.78 ± 16.04 (3) | 21.47 ± 13.42 (3) | 23.81 ± 16.56 (3) | 20.47 ± 12.7 (3) | 21.55 ± 12.59 (3) | 18.95 ± 11.4 (3) | 24.79 ± 16.89 (3) | 54.84 ± 9.41 (3) |
LC3 ( lux) | 17.37 ± 10.36 (3) | 30.53 ± 28.34 (3) | 21.88 ± 22.58 (3) | 27.15 ± 28.57 (3) | 20.23 ± 12.79 (3) | 22.39 ± 15.64 (3) | 18.03 ± 11.19 (3) | 23.26 ± 17.84 (3) | 52.17 ± 17.90 (3) |
LC4 ( lux) | 12.84 ± 9.61 (3) | 17.36 ± 15.22 (3) | 15.12 ± 13.1 (3) | 16.65 ± 15.11 (3) | 14.36 ± 10.67 (3) | 13.03 ± 8.97 (3) | 14.44 ± 9.65 (3) | 17.82 ± 13.57 (3) | 40.76 ± 26.12 (3) |
LC5 ( lux) | 12.44 ± 9.62 (3) | 20.96 ± 19.39 (3) | 15.81 ± 16.58 (3) | 19.43 ± 22.08 (3) | 19.76 ± 14.65 (3) | 17.2 ± 15.28 (3) | 24.94 ± 15.35 (3) | 27.90 ± 17.85 (3) | 40.62 ± 29.02 (3) |
bright tone | 4.37 ± 1.98 (5) | 4.16 ± 1.46 (5) | 4.14 ± 1.63 (5) | 4.28 ± 1.6 (5) | 4.27 ± 1.88 (5) | 4.24 ± 1.53 (5) | 4.1 ± 1.55 (5) | 4.08 ± 1.47 (5) | 32.02 ± 22.30 (5) |
intermediate tone | 21.13 ± 10.92 (5) | 21.64 ± 10.51 (5) | 16.59 ± 11.79 (5) | 16.11 ± 10.76 (5) | 21.41 ± 7.05 (5) | 20.47 ± 9.0 (5) | 25.3 ± 8.61 (5) | 26.17 ± 8.79 (5) | 43.74 ± 3.15 (5) |
dark tone | 29.05 ± 3.53 (5) | 46.12 ± 12.79 (5) | 37.8 ± 9.02 (5) | 45.59 ± 13.34 (5) | 33.85 ± 3.51 (4) | 34.66 ± 6.08 (4) | 31.14 ± 3.05 (5) | 40.35 ± 6.07 (5) | 68.65 ± 9.62 (5) |
LGI-PPGI-FVD | |||||||||
resting | 2.22 ± 1.3 (6) | 2.20 ± 1.31 (6) | 2.23 ± 1.30 (6) | 2.21 ± 1.31 (6) | 2.08 ± 1.38 (6) | 2.18 ± 1.32 (6) | 2.20 ± 1.31 (6) | 2.20 ± 1.32 (6) | 2.24 ± 1.31 (6) |
gym | 13.9 ± 11.16 (2) | 15.6 ± 12.89 (2) | 17.81 ± 9.53 (2) | 33.5 ± 4.35 (2) | 2.99 ± 0.0 (1) | 31.84 ± 0.0 (1) | 13.77 ± 0.0 (1) | 29.6 ± 0.0 (1) | 39.66 ± 17.22 (6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirnar, Ž.; Finžgar, M.; Podržaj, P. Performance Evaluation of rPPG Approaches with and without the Region-of-Interest Localization Step. Appl. Sci. 2021, 11, 3467. https://doi.org/10.3390/app11083467
Pirnar Ž, Finžgar M, Podržaj P. Performance Evaluation of rPPG Approaches with and without the Region-of-Interest Localization Step. Applied Sciences. 2021; 11(8):3467. https://doi.org/10.3390/app11083467
Chicago/Turabian StylePirnar, Žan, Miha Finžgar, and Primož Podržaj. 2021. "Performance Evaluation of rPPG Approaches with and without the Region-of-Interest Localization Step" Applied Sciences 11, no. 8: 3467. https://doi.org/10.3390/app11083467
APA StylePirnar, Ž., Finžgar, M., & Podržaj, P. (2021). Performance Evaluation of rPPG Approaches with and without the Region-of-Interest Localization Step. Applied Sciences, 11(8), 3467. https://doi.org/10.3390/app11083467