Parallel Extreme Learning Machines Based on Frequency Multiplexing
Abstract
:1. Introduction
2. Experimental System
2.1. Experimental Setup
2.2. Electric Field Description
3. Principle of Operation
3.1. Introduction
3.2. Definitions
3.3. Dataset Preprocessing
3.4. Readout
3.5. Numerical Simulation
4. Results
4.1. Parallel Operations Mode
4.2. Single Operation Mode
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scardapane, S.; Wang, D. Randomness in Neural Networks: An Overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017, 7, e1200. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; pp. 985–990. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cognit. Comput. 2015, 7, 263–278. [Google Scholar] [CrossRef]
- Gonon, L.; Grigoryeva, L.; Ortega, J.P. Approximation bounds for random neural networks and reservoir systems. arXiv 2002, arXiv:2002.05933v2. [Google Scholar]
- Xu, R.; Lv, P.; Xu, F.; Shi, Y. A survey of approaches for implementing optical neural networks. Opt. Laser Technol. 2021, 136, 106787. [Google Scholar] [CrossRef]
- Saade, A.; Caltagirone, F.; Carron, I.; Daudet, L.; Drémeau, A.; Gigan, S.; Krzakala, F. Random projections through multiple optical scattering: Approximating Kernels at the speed of light. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 20–25 March 2016; pp. 6215–6219. [Google Scholar] [CrossRef] [Green Version]
- Pierangeli, D.; Marcucci, G.; Conti, C. Photonic extreme learning machine by free-space optical propagation. Photonics Res. 2021, 9, 1446–1454. [Google Scholar] [CrossRef]
- Tegin, U.; Yıldırım, M.; Oguz, I.; Moser, C.; Psaltis, D. Scalable Optical Learning Operator. arXiv 2012, arXiv:2012.12404. [Google Scholar]
- Ortín, S.; Soriano, M.C.; Pesquera, L.; Brunner, D.; San-Martín, D.; Fischer, I.; Mirasso, C.; Gutiérrez, J. A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci. Rep. 2015, 5, 14945. [Google Scholar] [CrossRef] [Green Version]
- Appeltant, L.; Soriano, M.C.; Sande, G.V.D.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I. Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468. [Google Scholar] [CrossRef] [Green Version]
- Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S. Optoelectronic reservoir computing. Sci. Rep. 2012, 2, 287. [Google Scholar] [CrossRef]
- Larger, L.; Soriano, M.C.; Brunner, D.; Appeltant, L.; Gutierrez, J.M.; Pesquera, L.; Mirasso, C.R.; Fischer, I. Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing. Opt. Express. 2012, 20, 3241–3249. [Google Scholar] [CrossRef]
- Rodan, A.; Tiňo, P. Simple Deterministically Constructed Recurrent Neural Networks. In Intelligent Data Engineering and Automated Learning—IDEAL 2010; Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 267–274. [Google Scholar]
- Bueno, J.; Maktoobi, S.; Froehly, L.; Fischer, I.; Jacquot, M.; Larger, L.; Brunner, D. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 2018, 5, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Antonik, P.; Marsal, N.; Brunner, D.; Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 2019, 1, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Vandoorne, K.; Mechet, P.; Van Vaerenbergh, T.; Fiers, M.; Morthier, G.; Verstraeten, D.; Schrauwen, B.; Dambre, J.; Bienstman, P. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 2014, 5, 3541. [Google Scholar] [CrossRef] [Green Version]
- Butschek, L.; Akrout, A.; Dimitriadou, E.; Haelterman, M.; Massar, S. Parallel photonic reservoir computing based on frequency multiplexing of neurons. arXiv 2008, arXiv:2008.11247. [Google Scholar]
- Lupo, A.; Butschek, L.; Massar, S. Photonic extreme learning machine based on frequency multiplexing. Opt. Express 2021, 29, 28257–28276. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Tan, M.; Corcoran, B.; Wu, J.; Nguyen, T.G.; Boes, A.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; et al. Photonic Perceptron Based on a Kerr Microcomb for High-Speed, Scalable, Optical Neural Networks. Laser Photonics Rev. 2020, 14, 2000070. [Google Scholar] [CrossRef]
- Xu, X.; Tan, M.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Hicks, D.G.; Morandotti, R.; et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 2021, 589, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A.S.; et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Li, K.; Liao, X.; Li, K. A Parallel Multiclassification Algorithm for Big Data Using an Extreme Learning Machine. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2337–2351. [Google Scholar] [CrossRef]
- Brunner, D.; Soriano, M.C.; Mirasso, C.R.; Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 2013, 4, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duport, F.; Smerieri, A.; Akrout, A.; Haelterman, M.; Massar, S. Virtualization of a Photonic Reservoir Computer. J. Light. Technol. 2016, 34, 2085–2091. [Google Scholar] [CrossRef]
- Parriaux, A.; Hammani, K.; Millot, G. Electro-optic frequency combs. Adv. Opt. Photonics 2020, 12, 223. [Google Scholar] [CrossRef]
- Fisher, R. Iris Data Set. Available online: http://archive.ics.uci.edu/ml/datasets/iris (accessed on 15 November 2021).
- Forina, M. Wine Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/wine (accessed on 15 November 2021).
- Lohweg, V. Banknote Authentication Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/banknote+authentication (accessed on 15 November 2021).
- Lincoff, G.H. Mushroom Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/mushroom (accessed on 15 November 2021).
- LeCun, Y.; Cortes, C.; Burges, C.J.C. MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 15 November 2021).
- de Chazal, P.; Tapson, J.; van Schaik, A. A comparison of extreme learning machines and back-propagation trained feed-forward networks processing the mnist database. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupo, A.; Massar, S. Parallel Extreme Learning Machines Based on Frequency Multiplexing. Appl. Sci. 2022, 12, 214. https://doi.org/10.3390/app12010214
Lupo A, Massar S. Parallel Extreme Learning Machines Based on Frequency Multiplexing. Applied Sciences. 2022; 12(1):214. https://doi.org/10.3390/app12010214
Chicago/Turabian StyleLupo, Alessandro, and Serge Massar. 2022. "Parallel Extreme Learning Machines Based on Frequency Multiplexing" Applied Sciences 12, no. 1: 214. https://doi.org/10.3390/app12010214
APA StyleLupo, A., & Massar, S. (2022). Parallel Extreme Learning Machines Based on Frequency Multiplexing. Applied Sciences, 12(1), 214. https://doi.org/10.3390/app12010214