Optimal Tests for Combining p-Values
Abstract
:1. Introduction
2. Methods
2.1. Some Existing Popular Tests
2.1.1. The Minimal p-Value (Min p) Test
2.1.2. The Chi-Square Test with Degrees of Freedom
2.1.3. The Fisher Test
2.1.4. The z Test
2.2. New Tests Based on Gamma Distribution
2.2.1. Gamma Distribution-Base Test
2.2.2. Connections between and Existing Popular Tests
2.2.3. T(α) as the Uniformly Most Powerful Test
2.3. Constrained Likelihood Ratio Tests
2.3.1. CLRT-Based Tests with Known Values
2.3.2. The Optimal CLRT-Based Test When Is Unknown
3. Numeric Studies
4. Real Data Examples
4.1. Example 1: A Meta-Analysis
4.2. Example 2: A Survival Analysis from a Clinical Trial
5. Discussion and Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Theorems
- (i)
- Denote . From Lemma A1 and Corollary A3,But, . Hence, , and .
- (ii)
- From the property of gamma distribution, we know that , a chi-square distribution with df. However, the sum of is Hence, let . However, from Proposition 2, ; therefore,
- (iii)
- As in (ii), when and ; therefore, .
- (iv)
- From the property of gamma distribution, we know that (. Hence, for , and . If we define , then (. On the other hand, since is a linear transformation of , it is easy to show that for any . Hence, . □
References
- Fisher, R.A. Statistical Methods for Research Workers, 4th ed.; Oliver and Boyd: Edinburgh, UK, 1932. [Google Scholar]
- Pearson, K. On a New Method of Determining “Goodness of Fit”. Biometrika 1934, 26, 425. [Google Scholar]
- Stouffer, S.A.; Suchman, E.A.; DeVinney, L.C.; Star, S.A.; Williams, R.M., Jr. The American Soldier: Adjustment during Army Life. (Studies in Social Psychology in World War II); Princeton University Press: Princeton, NJ, USA, 1949; Volume 1. [Google Scholar]
- Tippett, L.H.C. Methods of Statistics; Williams Norgate: London, UK, 1931. [Google Scholar]
- Chen, Z. Is the weighted z-test the best method for combining probabilities from independent tests? J. Evol. Biol. 2011, 24, 926–930. [Google Scholar] [CrossRef]
- Loughin, T.M. A systematic comparison of methods for combining p-values from independent tests. Comput. Stat. Data Anal. 2004, 47, 467–485. [Google Scholar] [CrossRef]
- Whitlock, M.C. Combining probability from independent tests: The weighted Z-method is superior to Fisher’s approach. J. Evol. Biol. 2005, 18, 1368–1373. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, J. Cauchy combination test: A powerful test with analytic p-value calculation under arbitrary dependency structures. J. Am. Stat. Assoc. 2020, 115, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z. Robust tests for combining p-values under arbitrary dependency structures. 2021; unpublished. [Google Scholar]
- Owen, A.B. Karl Pearson’s meta-analysis revisited. Ann. Stat. 2009, 37, 3867–3892. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.; Olkin, I. Statistical Methods for Meta-Analysis; Academic: San Diego, CA, USA, 1985. [Google Scholar]
- Chen, Z.; Wang, K. Gene-based sequential burden association test. Stat. Med. 2019, 38, 2353–2363. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Q.; Wang, K. A novel gene-set association test based on variance-gamma distribution. Stat. Methods Med. Res. 2018, 28, 2868–2875. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, Q.; Wang, K. A genetic association test through combining two independent tests. Genomics 2019, 111, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, Y.; Lin, T.; Liu, Q.; Wang, K. Gene-based genetic association test with adaptive optimal weights. Genet. Epidemiol. 2018, 42, 95–103. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, K. A gene-based test of association through an orthogonal decomposition of genotype scores. Hum. Genet. 2017, 136, 1385–1394. [Google Scholar] [CrossRef]
- Chen, Z.; Ng, H.K.T.; Li, J.; Liu, Q.; Huang, H. Detecting associated single-nucleotide polymorphisms on the X chromosome in case control genome-wide association studies. Stat. Methods Med. Res. 2017, 26, 567–582. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, T.; Wang, K. A powerful variant-set association test based on chi-square distribution. Genetics 2017, 207, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Han, S.; Wang, K. Genetic association test based on principal component analysis. Stat. Appl. Genet. Mol. Biol. 2017, 16, 189–198. [Google Scholar] [CrossRef]
- Chen, Z. Testing for gene-gene interaction in case-control GWAS. Stat. Its Interface 2017, 10, 267–277. [Google Scholar] [CrossRef]
- Choquet, H.; Melles, R.B.; Anand, D.; Yin, J.; Cuellar-Partida, G.; Wang, W.; Hoffmann, T.J.; Nair, K.S.; Hysi, P.G.; Lachke, S.A.; et al. A large multiethnic GWAS meta-analysis of cataract identifies new risk loci and sex-specific effects. Nat. Commun. 2021, 12, 3595. [Google Scholar] [CrossRef]
- Schwantes-An, T.H.; Darlay, R.; Mathurin, P.; Masson, S.; Liangpunsakul, S.; Mueller, S.; Aithal, G.P.; Eyer, F.; Gleeson, D.; Thompson, A.; et al. Genome-wide Association Study and Meta-analysis on Alcohol-Associated Liver Cirrhosis Identifies Genetic Risk Factors. Hepatology 2021, 73, 1920–1931. [Google Scholar] [CrossRef]
- Birnbaum, A. Combining Independent Tests of Significance. J. Am. Stat. Assoc. 1954, 49, 559–574. [Google Scholar]
- Bonferroni, C. Il calcolo delle assicurazioni su gruppi di teste. In Studi in Onore del Professore Salvatore Ortu Carboni; Bardi: Rome, Italy, 1935; pp. 13–60. [Google Scholar]
- Lancaster, H. The combination of probabilities: An application of orthonormal functions. Aust. J. Stat. 1961, 3, 20–33. [Google Scholar] [CrossRef]
- Chen, Z.; Nadarajah, S. On the optimally weighted z-test for combining probabilities from independent studies. Comput. Stat. Data Anal. 2013, 70, 387–394. [Google Scholar] [CrossRef]
- Berk, R.H.; Cohen, A. Asymptotically optimal methods of combining tests. J. Am. Stat. Assoc. 1979, 74, 812–814. [Google Scholar] [CrossRef]
- Birnbaum, A. Characterizations of complete classes of tests of some multiparametric hypotheses, with applications to likelihood ratio tests. Ann. Math. Stat. 1955, 26, 21–36. [Google Scholar] [CrossRef]
- Bahadur, R.R. Rates of Convergence of Estimates and Test Statistics. Ann. Math. Stat. 1967, 38, 303–324. [Google Scholar] [CrossRef]
- Self, S.G.; Liang, K.Y. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 1987, 82, 605–610. [Google Scholar] [CrossRef]
- Bachmann, S.; Finger, C.; Huss, A.; Egger, M.; Stuck, A.E.; Clough-Gorr, K.M. Inpatient rehabilitation specifically designed for geriatric patients: Systematic review and meta-analysis of randomised controlled trials. BMJ 2010, 340, c1718. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.D.; Higgins, J.; Deeks, J. Interpretation of random effects meta-analyses. BMJ 2011, 342, d549. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, G.; Li, J. Goodness-of-fit test for meta-analysis. Sci. Rep. 2015, 5, 16983. [Google Scholar] [CrossRef]
- The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N. Engl. J. Med. 1997, 336, 525–533. [Google Scholar] [CrossRef]
- Qiu, P.; Sheng, J. A two-stage procedure for comparing hazard rate functions. J. R. Stat. Soc. Ser. B 2007, 70, 191–208. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, H.; Qiu, P. Comparison of multiple hazard rate functions. Biometrics 2015, 72, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Mosteller, F.; Bush, R.; Lindzey, G. Handbook of Social Psychology; Addison-Wesley: Cambridge, MA, USA, 1954; pp. 289–334. [Google Scholar]
- Good, I. On the weighted combination of significance tests. J. R. Stat. Soc. Ser. B 1955, 17, 264–265. [Google Scholar] [CrossRef]
- Van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: Cambridge, UK, 2000; Volume 3. [Google Scholar]
- Agresti, A. Categorical Data Analysis; Wiley-Interscience: Hoboken, NJ, USA, 2002. [Google Scholar]
- Lancaster, H. The derivation and partition of χ2 in certain discrete distributions. Biometrika 1949, 36, 117. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Martin, R.; Syring, N. Efficient simulation from a gamma distribution with small shape parameter. Comput. Stat. 2017, 32, 1767–1775. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R.L. Statistical Inference; Duxbury: Pacific Grove, CA, USA, 2002; Volume 2. [Google Scholar]
Study | OR | 95% CI | Study | OR | 95% CI | Study | OR | 95% CI |
---|---|---|---|---|---|---|---|---|
1 | 1.11 | 0.51, 2.39 | 5 | 0.88 | 0.39, 1.95 | 9 | 1.06 | 0.63, 1.79 |
2 | 0.97 | 0.78, 1.21 | 6 | 1.28 | 0.71, 2.30 | 10 | 2.95 | 1.54, 5.63 |
3 | 1.13 | 0.73, 1.72 | 7 | 1.19 | 0.69, 2.08 | 11 | 2.36 | 1.18, 4.72 |
4 | 1.08 | 0.42, 2.75 | 8 | 3.82 | 1.37, 10.60 | 12 | 1.68 | 1.05, 2.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z. Optimal Tests for Combining p-Values. Appl. Sci. 2022, 12, 322. https://doi.org/10.3390/app12010322
Chen Z. Optimal Tests for Combining p-Values. Applied Sciences. 2022; 12(1):322. https://doi.org/10.3390/app12010322
Chicago/Turabian StyleChen, Zhongxue. 2022. "Optimal Tests for Combining p-Values" Applied Sciences 12, no. 1: 322. https://doi.org/10.3390/app12010322
APA StyleChen, Z. (2022). Optimal Tests for Combining p-Values. Applied Sciences, 12(1), 322. https://doi.org/10.3390/app12010322