Investigating the Threshold Conditions of Air Breakdown with Mode-Locked Q-Switched Laser Pulses, and the Temporal Dynamics of Induced Plasma with Self-Scattering Phenomenon
Abstract
:1. Introduction
2. Experimental Setup
3. Results
3.1. Qualitative Observation of the Threshold Conditions
3.2. A Statistic Method to Evaluate the Threshold and Investigate the Threshold Conditions
3.3. Temporal Characteristics of Air Breakdown
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maker, P.D.; Terhune, R.W.; Savage, C.M. Optical third harmonic generation. In Proceedings of the 3rd International Quantum Electronics Conference, Paris, France, 29 May–3 June 1963; Volume 2, pp. 1559–1572. [Google Scholar]
- Meyerand, R.G., Jr.; Haught, A.F. Gas breakdown at optical frequencies. Phys. Rev. Lett. 1963, 11, 401–403. [Google Scholar] [CrossRef]
- Panchenko, A.N.; Shulepov, M.A.; Tel’Minov, A.E.; Zakharov, L.A.; Paletsky, A.A.; Bulgakova, N. Pulsed IR laser ablation of organic polymers in air: Shielding effects and plasma pipe formation. J. Phys. D Appl. Phys. 2011, 44, 385201. [Google Scholar] [CrossRef]
- Mon, T.T.; Muhamad, K.F.; Ahmad, A.H.; Mohid, Z. Experimental Micromachining of Silicon with Nd-YAG Laser. Appl. Mech. Mater. 2011, 83, 244–248. [Google Scholar] [CrossRef]
- Ashmore, P.G. Photochemistry and Reaction Kinetics; Cambridge University Press: London, UK, 1967. [Google Scholar]
- Andersson, P.U.; Holmlid, L. Fusion Generated Fast Particles by Laser Impact on Ultra-Dense Deuterium: Rapid Variation with Laser Intensity. J. Fusion Energy 2012, 31, 249–256. [Google Scholar] [CrossRef]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. Laser Induced Breakdown Spectroscopy; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Pavel, N.; Tsunekane, M.; Taira, T. Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition. Opt. Express 2011, 19, 9378–9384. [Google Scholar] [CrossRef]
- Taira, T. Domain-controlled laser ceramics toward Giant Micro-photonics [Invited]. Opt. Mater. Express 2011, 1, 1040–1050. [Google Scholar] [CrossRef]
- Chen, R.C.C.; Yu, Y.T.; Su, K.W.; Chen, J.F.; Chen, Y.F. Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface. Opt. Express 2013, 21, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Raizer, Y.P. Gas Discharge Physics; Springer Science and Business Media LLC: New York, NY, USA, 1991; p. 7. [Google Scholar]
- Kroll, N.; Watson, K.M. Theoretical Study of Ionization of Air by Intense Laser Pulses. Phys. Rev. A 1972, 5, 1883–1905. [Google Scholar] [CrossRef]
- Chan, C.H.; Moody, C.D.; McKnight, W.B. Significant loss mechanisms in gas breakdown at 10.6 μm. J. Appl. Phys. 1973, 44, 1179. [Google Scholar] [CrossRef]
- Amoruso, S.; Bruzzese, R.; Spinelli, N.; Velotta, R. For laser ablation. J. Phys. B At. Mol. Opt. Phys. 1999, 32, R131. [Google Scholar] [CrossRef]
- Kaselouris, E.; Nikolos, I.K.; Orphanos, Y.; Bakarezos, E.; Papadogiannis, N.A.; Tatarakis, M.; Dimitriou, V. For ns laser matter interaction. J. Multiscale Model. 2013, 5, 1330001. [Google Scholar] [CrossRef]
- Polynkin, P.; Moloney, J.V. Optical breakdown of air triggered by femtosecond laser filaments. Appl. Phys. Lett. 2011, 99, 151103. [Google Scholar] [CrossRef] [Green Version]
- Shneider, M.N.; Miles, R.B. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization. Phys. Plasmas 2012, 19, 083508. [Google Scholar] [CrossRef]
- Thiyagarajan, M.; Thompson, S. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas. J. Appl. Phys. 2012, 111, 73302. [Google Scholar] [CrossRef]
- Brieschenk, S.; Kleine, H.; O’Byrne, S. On the measurement of laser-induced plasma breakdown thresholds. J. Appl. Phys. 2013, 114, 093101. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Lewis, J.; Parigger, C. Spatial and temporal profiles of pulsed laser-induced air plasma emissions. J. Quant. Spectrosc. Radiat. Transf. 2000, 67, 91–103. [Google Scholar] [CrossRef]
- McMillian, M.H.; Woodruff, S.D.; Richardson, S.W.; McIntyre, D. Laser Spark Ignition: Laser Development and Engine Testing. In Proceedings of the ASME 2004 Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers. Long Beach, CA, USA, 24–27 October 2004; pp. 823–832. [Google Scholar]
- Phuoc, T.X. Laser spark ignition: Experimental determination of laser-induced breakdown thresholds of combustion gases. Opt. Commun. 2000, 175, 419–423. [Google Scholar] [CrossRef]
- Nishihara, M.; Freund, J.B.; Glumac, N.G.; Elliott, G.S. Influence of mode-beating pulse on laser-induced plasma. J. Phys. D Appl. Phys. 2018, 51, 135601. [Google Scholar] [CrossRef]
- Tambay, R.; Thareja, R.K. Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm. J. Appl. Phys. 1991, 70, 2890–2892. [Google Scholar] [CrossRef]
- Du, D.; Liu, X.; Korn, G.; Squier, J.; Mourou, G. Laser-induced breakdown by impact ionization in SiO2with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 1994, 64, 3071–3073. [Google Scholar] [CrossRef] [Green Version]
- Chýlek, P.; Jarzembski, M.A.; Srivastava, V.; Pinnick, R.G. Pressure dependence of the laser-induced breakdown thresholds of gases and droplets. Appl. Opt. 1990, 29, 2303–2306. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Lucht, R.A.; Rawlins, W.T. Spectroscopic investigation of laser-initiated low-pressure plasmas in atmospheric gases. Appl. Opt. 1983, 22, 1573–1577. [Google Scholar] [CrossRef] [Green Version]
- Bärwinkel, M.; Lorenz, S.; Stäglich, R.; Brüggemann, D. Influence of focal point properties on energy transfer and plasma evolution during laser ignition process with a passively q-switched laser. Opt. Express 2016, 24, 15189. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.H.; Taira, T. Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd:YAG ceramic micro-laser by cavity-length control. Opt. Express 2017, 25, 6302–6310. [Google Scholar] [CrossRef]
- Ireland, C.L.M. Gas breakdown by single, similar 40 ps–50 ns, 1.06 μm laser pulses. J. Phys. D Appl. Phys. 1974, 7, L179–L183. [Google Scholar] [CrossRef]
- Phuoc, T.X. Laser-induced spark ignition fundamental and applications. Opt. Lasers Eng. 2006, 44, 351–397. [Google Scholar] [CrossRef]
- Cho, C.Y.; Huang, Y.P.; Huang, Y.J.; Chen, Y.C.; Su, K.W.; Chen, Y.F. Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: Application for efficient optical parametric oscillator. Opt. Express 2013, 21, 1489–1495. [Google Scholar] [CrossRef]
- Liang, H.C.; Huang, Y.J.; Huang, W.C.; Su, K.W.; Chen, Y.F. High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm. Opt. Lett. 2009, 35, 4–6. [Google Scholar] [CrossRef]
- Huang, Y.P.; Cho, C.Y.; Huang, Y.J. Efficient high-energy pulse generation from a diode-side-pumped passively Q-switched Nd:YAG laser and application for optical parametric oscillator. Laser Phys. Lett. 2014, 11, 095001. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Zhao, S.; Li, D.; Li, G.; Yang, K.; Zhang, G.; Cheng, K. Optimization of the pulse-width of diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs saturable absorber. Appl. Opt. 2011, 50, 5970–5976. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Huang, K.F.; Tsai, S.W.; Lan, Y.P.; Wang, S.C.; Chen, J. Simultaneous Mode Locking in a Diode-Pumped Passively Q-Switched Nd:YVO(4) Laser with a GaAs Saturable Absorber. Appl. Opt. 2001, 40, 6038–6041. [Google Scholar] [CrossRef] [PubMed]
- Puliafito, C.A.; Stoinert, R.F. Short-pulsed Nd:YAG laser microsurgery of the eye: Biophysical considerations. IEEE J. Quantum Electron. 1984, 20, 1442–1448. [Google Scholar] [CrossRef]
- Psaltis, D.; Quake, S.R.; Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nat. Cell Biol. 2006, 442, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Machala, Z.; Janda, M.; Hensel, K.; Jedlovský, I.; Leštinská, L.; Foltin, V.; Martišovitš, V.; Morvová, M. Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J. Mol. Spectrosc. 2007, 243, 194–201. [Google Scholar] [CrossRef]
- Krausz, F.; Fermann, M.; Brabec, T.; Curley, P.; Hofer, M.; Ober, M.; Wintner, E.; Schmidt, A.; Spielmann, C. Femtosecond solid-state lasers. IEEE J. Quantum Electron. 1992, 28, 2097–2122. [Google Scholar] [CrossRef]
- Borghese, A.; Merola, S.S. Time-resolved spectral and spatial description of laser-induced breakdown in air as a pulsed, bright, and broadband ultraviolet-visible light source. Appl. Opt. 1998, 37, 3977–3983. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, K.-T.; Wu, C.-H.; Wang, P.-H.; Tuan, P.-H.; Su, K.-W. Investigating the Threshold Conditions of Air Breakdown with Mode-Locked Q-Switched Laser Pulses, and the Temporal Dynamics of Induced Plasma with Self-Scattering Phenomenon. Appl. Sci. 2022, 12, 41. https://doi.org/10.3390/app12010041
Yen K-T, Wu C-H, Wang P-H, Tuan P-H, Su K-W. Investigating the Threshold Conditions of Air Breakdown with Mode-Locked Q-Switched Laser Pulses, and the Temporal Dynamics of Induced Plasma with Self-Scattering Phenomenon. Applied Sciences. 2022; 12(1):41. https://doi.org/10.3390/app12010041
Chicago/Turabian StyleYen, Kai-Ting, Chih-Hung Wu, Pin-Hsun Wang, Pi-Hui Tuan, and Kuan-Wei Su. 2022. "Investigating the Threshold Conditions of Air Breakdown with Mode-Locked Q-Switched Laser Pulses, and the Temporal Dynamics of Induced Plasma with Self-Scattering Phenomenon" Applied Sciences 12, no. 1: 41. https://doi.org/10.3390/app12010041