High-Efficiency Continuous-Wave Ti:Sapphire Laser with High-Intensity Pumping Using a Commercially Available Crystal
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Theory
3. Experimental Results
4. Discussion
4.1. Comparison between the Experiment and the Theory
4.2. Theoretical Analysis for Higher Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moulton, P.F. Ti-doped sapphire: Tunable solid-state laser. Opt. Photonics News 1982, 8, 9. [Google Scholar] [CrossRef]
- Moulton, P.F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. 1986, 3, 125–133. [Google Scholar] [CrossRef]
- Xu, C.; Zipfel, W.; Shear, J.B.; Williams, R.M.; Webb, W.W. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Appl. Phys. 1996, 93, 10763–10768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartels, A. Ultrahigh-resolution ophthalmic optical coherence tomography. Opt. Lett. 1999, 46, 996–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drexler, W.; Morgner, U.; Ghanta, R.K.; Kärtner, F.K.; Schumand, J.S.; Fujimoto, J.G. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 2001, 7, 502–507. [Google Scholar] [CrossRef]
- Spence, D.E.; Kean, P.N.; Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 1991, 16, 42–44. [Google Scholar] [CrossRef]
- Rausch, S.; Binhammer, T.; Harth, A.; Kim, J.; Ell, R.; Kärtner, F.X.; Morgner, U. Controlled waveforms on the single-cycle scale from a femtosecond oscillator. Opt. Express 2008, 16, 9739–9745. [Google Scholar] [CrossRef] [Green Version]
- Boquillon, J.P.; Musset, O. Flashlamp-pumped Ti:Sapphire laser: Influence of the rod figure of merit and Ti3+ concentration. Appl. Phys. 1994, 59, 357–360. [Google Scholar] [CrossRef]
- Harrison, J.; Finch, A.; Rines, D.M.; Rines, G.A.; Moulton, P.F. Low-threshold, cw, all-solid-state Ti:A12O3 laser. Opt. Lett. 1991, 16, 581–583. [Google Scholar] [CrossRef]
- Pinto, J.F.; Esterowitz, L.; Rosenblatt, G.H.; Kokta, M.; Peressini, D. Improved Ti:sapphire laser performance with new high figure of merit crystals. IEEE J. Quantum Electron. 1994, 30, 2612–2616. [Google Scholar] [CrossRef]
- Samanta, G.K.; Kumar, S.C.; Devi, K.; Ebrahim-Zadeh, M. High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm. Opt. Lasers Eng. 2011, 50, 215–219. [Google Scholar] [CrossRef]
- Kanetake, T.; Hayashi, K.; Kadoya, H.; Inayoshi, S.; Kataoka, S.; Sugiki, F.; Nakajima, N.; Kobayashi, R.; Kawato, S. High efficiency continuous-wave Ti:sapphire laser. In Proceedings of the Conference on Lasers and Electro-Optics, OSA Technical Digest (Online), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Shibata, M.; Kawashima, T.; Yamashita, M.; Kawato, S. Theoretical analysis of a high efficiency blue-laser-diode-pumped Ti:sapphire laser by high intensity pumping. Laser Phys. Lett. 2021, 18, 105001. [Google Scholar] [CrossRef]
- Takano, T.; Ogawa, H.; Ohae, C.; Katsuragawa, M. 10 W injection-locked single-frequency continuous-wave titanium:sapphire laser. Opt. Express 2021, 29, 6927–6934. [Google Scholar] [CrossRef]
- 3900S, Spectra Physics. Available online: https://www.spectra-physics.com/en/f/3900s-ti-sapphire-laser (accessed on 10 March 2022).
- HEM® Ti:Sapphire Laser Optics Are Renowned for Their High Quality, Demanded by the World’s Top Ultrafast Laser Laboratories, GT Advanced Technologies. Available online: https://gtat.com/products/ti-sapphire/?utm_source=pocket_mylist (accessed on 1 March 2022).
- Ti:Sapphire, Crytur. Available online: https://www.crytur.cz/materials/tisapphire/ (accessed on 1 March 2022).
- Ti:sapphire Crystals, Optogama. Available online: https://4lasers.com/en/components/crystals/laser-crystals/ti-sapphire-crystals (accessed on 1 March 2022).
- Ti:Sapphire, Castech. Available online: https://www.castech.com/product/Ti%3ASapphire---Titanium-Doped-Sapphire-99.html (accessed on 1 March 2022).
- Ti:Sapphire Crystals, Newlight Photonics. Available online: https://www.newlightphotonics.com/Laser-Crystals/Ti-doped-Sapphire-Crystals (accessed on 1 March 2022).
- Ti:SAPPHIRE Crystal, Altechna. Available online: https://www.altechna.com/wp-content/uploads/2018/10/ti-sapphire-white-paper-a4-05.pdf (accessed on 1 March 2022).
- Ti:Sapphire Laser Crystals. The Roditi International Corporation Ltd. Available online: https://www.roditi.com/Laser/Ti_Sapphire.html (accessed on 1 March 2022).
- Ti:Sapphire Crystals, Eksma Optics. Available online: https://eksmaoptics.com/nonlinear-and-laser-crystals/laser-crystals/ti-sapphire-crystals/ (accessed on 1 March 2022).
- Ti:Sapphire Crystal, Opt City. Available online: https://www.optocity.com/TiSapphire.htm (accessed on 1 March 2022).
- Ti:Sapphire, Crylink. Available online: https://www.laser-crylink.com/laser-products/laser-crystal/titanium-sapphire-crystal/ (accessed on 1 March 2022).
- Products, Union Carbide Corporation. Available online: https://www.unioncarbide.com/products.html (accessed on 1 March 2022).
- Matsubara, S.; Ueda, T.; Takamido, T.; Kawato, S.; Kobayashi, T. Nearly quantum-efficiency limited oscillation of Yb:YAG laser at room temperature. In Proceedings of the Advanced Solid-State Photonics; Technical Digest, Vienna, Austria, 6–9 February 2005. [Google Scholar]
- Matsubara, S.; Ueda, T.; Kawato, S.; Kobayashi, T. Highly efficient continuous-wave laser oscillation in microchip Yb:YAG laser at room temperature. Jpn. J. Appl. Phys. 2007, 46, L132–L134. [Google Scholar] [CrossRef]
- Matsubara, S.; Ueda, T.; Inoue, M.; Tanaka, M.; Otani, K.; Kawato, S.; Kobayashi, T. High efficiency cavity dumped operation of Yb:YAG laser at room temperature. In Proceedings of the Advanced Solid-State Photonics; Technical Digest, Incline Village, NV, USA, 20 January–1 February 2006. [Google Scholar]
- Takama, M.; Matsubara, S.; Ueda, T.; Inoue, M.; Tanaka, M.; Otani, K.; Kawato, S.; Kobayashi, T. Highly efficient nanosecond-pulse Yb:YAG laser. Smart Process. Technol. 2007, 2, 281–283. [Google Scholar]
- Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; et al. High-efficiency cavity-dumped micro-chip Yb:YAG laser. In Proceedings of the SPIE 9238, Pacific Rim Laser Damage 2014: Optical Materials for High-Power Lasers, 92380K (22 September 2014), Yokohama, Japan, 22–24 April 2014. [Google Scholar]
- Kubodera, K.; Otsuka, K. Single-transverse-mode LiNdP4O12 slab waveguide laser. J. Appl. Phys. 1979, 50, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.Y.; Byer, R.L. Medeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser. IEEE J. Quantum. Electron. 1987, 23, 605–612. [Google Scholar]
- Risk, W.P. Modeling of longitudinally pumped solid-state lasers. J. Opt. Soc. Am. B 1988, 5, 1412–1423. [Google Scholar] [CrossRef]
- Koechner, W. Solid State Laser Engineering, 5th ed.; Springer: Berlin, Germany, 2013; pp. 77–79. [Google Scholar]
- Caird, J.A.; Payne, S.A.; Staver, P.R.; Ramponi, A.J.; Chase, L.L. Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser. IEEE J. Quantum. Electron. 1988, 24, 1077–1099. [Google Scholar] [CrossRef]
- Findlay, D.; Clay, R.A. Measument of internal losses in 4-level lasers. Phys. Lett. 1966, 20, 277–278. [Google Scholar] [CrossRef]
- Foster, J.D.; Osterink, L.M. Thermal effects in a Nd:YAG laser. J. Appl. Phys. 1970, 41, 3656–3663. [Google Scholar] [CrossRef]
- Koechner, W. Thermal lensing in a Nd:YAG laser rod. Appl. Opt. 1970, 9, 2548–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innocenzi, M.E.; Yura, H.T.; Fincher, C.L.; Fields, R.A. Thermal modeling of continuous-wave end pumped solid-state lasers. Appl. Phys. 1990, 56, 1831–1833. [Google Scholar] [CrossRef]
- Millenia eV, Spectra Physics. Available online: https://www.spectra-physics.com/en/f/millennia-ev-cw-dpss-laser (accessed on 19 March 2022).
Author (Year) | Pump Wavelength (nm) | Pulse Width | FOM | Incident Pump Power (W) |
Optical-to-Optical Conversion Efficiency | |
---|---|---|---|---|---|---|
Moulton et al. (1982) [1] | - | 500 ns | - | - | - | - |
Spence et al. (1991) [6] | 488/514 | 60 fs | - | 8 | 5.63 | - |
Rausch, et al. (2008) [7] | 532 | 4.4 fs | - | 5.5 | 1.64 | - |
Boquillon et al. (1994) [8] | - | - | - | - | 2.2 | - |
Harrison et al. (1991) [9] | 488/514 | CW | - | ~7.5 | 28.1 | 32.0 |
Joseph F. Pinto et al. (1994) [10] | 488/514 | CW | 1000 | ~10 | 35 | 40 |
G. K. Samanta et al. (2012) [11] | 532 | CW | >270 | ~11 | ~24 | 32.8 |
Kanetake et al. (2018) [12,13] | 532 | CW | 200 | 3.5 | 31.7 | 41.2 |
Takano et al. (2021) [14] | 532 | CW | >250 | 22.5 | >~40 (seeding power included) | 51 (pump power >11 W, with seeding) |
Spectra-Physics 3900 S (commercial, 2022) [15] | 532 | CW | - | ~10 | <~22 | - |
This work (2022) | 532 | CW | 200 | 5.0 | 32.4 | 42.5 |
Experiment | Theory | Experiment | Theory | Experiment | Theory | |
---|---|---|---|---|---|---|
18.0 | 18.9 | 20.4 | 19.6 | 0.58 | 0.23 | |
29.2 | 30.7 | 34.2 | 32.4 | 0.75 | 0.29 | |
32.4 | 37.8 | 42.5 | 41.3 | 1.19 | 0.42 |
Maximum Pump Power | Pumping Pass | ||||
---|---|---|---|---|---|
10 W | Single | 46.5 | 51.1 | 88.6 | |
Double | 51.2 | 57.4 | 89.1 | ||
25 W | 4.0% | Single | 50.7 | 54.2 | 92.8 |
Double | 55.9 | 59.6 | 93.1 | ||
Single | 47.5 | 52.1 | 89.8 | ||
Double | 52.5 | 57.4 | 90.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawato, S.; Kawashima, T. High-Efficiency Continuous-Wave Ti:Sapphire Laser with High-Intensity Pumping Using a Commercially Available Crystal. Appl. Sci. 2022, 12, 4815. https://doi.org/10.3390/app12104815
Kawato S, Kawashima T. High-Efficiency Continuous-Wave Ti:Sapphire Laser with High-Intensity Pumping Using a Commercially Available Crystal. Applied Sciences. 2022; 12(10):4815. https://doi.org/10.3390/app12104815
Chicago/Turabian StyleKawato, Sakae, and Toshiki Kawashima. 2022. "High-Efficiency Continuous-Wave Ti:Sapphire Laser with High-Intensity Pumping Using a Commercially Available Crystal" Applied Sciences 12, no. 10: 4815. https://doi.org/10.3390/app12104815
APA StyleKawato, S., & Kawashima, T. (2022). High-Efficiency Continuous-Wave Ti:Sapphire Laser with High-Intensity Pumping Using a Commercially Available Crystal. Applied Sciences, 12(10), 4815. https://doi.org/10.3390/app12104815