High-Temperature Coefficient of Resistance in MoxW1−xS2 Thin Film
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, L.; Lee, Y.H.; Shi, Y.; Hsu, A.; Chin, M.L.; Li, L.J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A.B.; Morpurgo, A.F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Shang, J.; Wang, J.; Shen, X.; Cao, B.; Peimyoo, N.; Zou, C.; Chen, Y.; Wang, Y.; Cong, C.; et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Lett. 2016, 16, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Fan, Y.; Zhou, Y.; Chen, Q.; Xu, W.; Warner, J.H. Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 with Graphene Electrodes. ACS Nano 2016, 10, 7866–7873. [Google Scholar] [CrossRef]
- Shokri, A.; Salami, N. Gas sensor based on MoS2 monolayer. Sens. Actuators B Chem. 2016, 236, 378–385. [Google Scholar] [CrossRef]
- Xu, X.; Luo, F.; Tang, W.; Hu, J.; Zeng, H.; Zhou, Y. Enriching Hot Electrons via NIR-Photon-Excited Plasmon in WS2 @Cu Hybrids for Full-Spectrum Solar Hydrogen Evolution. Adv. Funct. Mater. 2018, 28, 1804055. [Google Scholar] [CrossRef]
- Xu, X.; Luo, F.; Zhou, G.; Hu, J.; Zeng, H.; Zhou, Y. Self-assembly optimization of cadmium/molybdenum sulfide hybrids by cation coordination competition toward extraordinarily efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 18396–18402. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, Y.; Sun, P. Performances enhancement of graphene/n-Si Schottky junction solar cells with dual-functional MoS2 interfacial layers. J. Alloys Compd. 2021, 883, 160898. [Google Scholar] [CrossRef]
- Krishnamoorthy, D.; Prakasam, A. Graphene Hybridized with Tungsten disulfide (WS2) Based Heterojunctions Photoanode Materials for High Performance Dye Sensitized Solar Cell Device (DSSCs) Applications. J. Clust. Sci. 2020, 32, 621–630. [Google Scholar] [CrossRef]
- Khan, A.I.; Khakbaz, P.; Brenner, K.A.; Smithe, K.K.H.; Mleczko, M.J.; Esseni, D.; Pop, E. Large temperature coefficient of resistance in atomically thin two-dimensional semiconductors. Appl. Phys. Lett. 2020, 116, 203105. [Google Scholar] [CrossRef]
- Lee, M.; Mazaheri, A.; van der Zant, H.S.J.; Frisenda, R.; Castellanos-Gomez, A. Drawing WS2 thermal sensors on paper substrates. Nanoscale 2020, 12, 22091–22096. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, K.; Tsuchiya, T.; Yamaguchi, I.; Manabe, T.; Mizuta, S.; Kumagai, T. Microstructural and electrical properties of La0.7Ca0.3MnO3 thin films grown on SrTiO3 and LaAlO3 substrates using metal-organic deposition. J. Appl. Phys. 2005, 98, 013507. [Google Scholar] [CrossRef]
- Ko, T.S.; Chen, Y.L. Hybrid Enhancement of Surface-Enhanced Raman Scattering Using Few-Layer MoS2 Decorated with Au Nanoparticles on Si Nanosquare Holes. Nanomaterials 2022, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Zhao, W.; Ghorannevis, Z.; Amara, K.K.; Pang, J.R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P.H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Thee, M.T.; Elías, A.L.; Feng, S.; Zhou, C.; Fujisawa, K.; Perea-López, N.; Carozo, V.; Terrones, H.; Terrones, M. Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Mater. 2014, 2, 092514. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xi, J.; Dumcenco, D.O.; Liu, Z.; Kazu, S.; Wang, D.; Shuai, Z.; Huang, Y.; Xie, L. Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys. ACS Nano 2013, 7, 4610–4616. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.S.; Park, B.; Oh, S.H.; Roy, S.; Kim, J.; Choi, W. Composition-Tunable Synthesis of Large-Scale Mo1-xWxS2 Alloys with Enhanced Photoluminescence. ACS Nano 2018, 12, 6301–6309. [Google Scholar] [CrossRef]
- Liang, K.; Chianelli, R.; Chien, F.; Moss, S. Structure of poorly crystalline MoS2—A modeling study. J. Non-Cryst. Solids 1986, 79, 251–273. [Google Scholar] [CrossRef]
- Duphil, D.; Bastide, S.; Rouchaud, J.C.; Pastol, J.L.; Legendre, B.; Lévy-Clément, C. The chemical synthesis in solution and characterization of transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se) nanoparticles. Nanotechnology 2004, 15, 828–832. [Google Scholar] [CrossRef]
- Chang, L.; Yang, H.; Fu, W.; Zhang, J.; Yu, Q.; Zhu, H.; Chen, J.; Wei, R.; Sui, Y.; Pang, X.; et al. Simple synthesis of MoS2 inorganic fullerene-like nanomaterials from MoS2 amorphous nanoparticles. Mater. Res. Bull. 2008, 43, 2427–2433. [Google Scholar] [CrossRef]
- Geiss, W.; Liempt, J.A.M.V. Zur Kenntnis des binären Systems Wolfram-Molybdän. Z. Anorg. Allg. Chem. 1923, 128, 355–360. [Google Scholar] [CrossRef]
- Kato, K.; Ono, T. Change in Temperature Coefficient of Resistance of Heavily Doped Polysilicon Resistors Caused by Electrical Trimming. Jpn. J. Appl. Phys. 1996, 35, 4209–4215. [Google Scholar] [CrossRef]
- Li, J.; Yuan, N. Temperature sensitivity of resistance of VO2 polycrystalline films formed by modified ion beam enhanced deposition. Appl. Surf. Sci. 2004, 233, 252–257. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, T.-S.; Lin, E.-T.; Huang, X.-W.; Wu, P.-T.; Yang, Y.-L. High-Temperature Coefficient of Resistance in MoxW1−xS2 Thin Film. Appl. Sci. 2022, 12, 5110. https://doi.org/10.3390/app12105110
Ko T-S, Lin E-T, Huang X-W, Wu P-T, Yang Y-L. High-Temperature Coefficient of Resistance in MoxW1−xS2 Thin Film. Applied Sciences. 2022; 12(10):5110. https://doi.org/10.3390/app12105110
Chicago/Turabian StyleKo, Tsung-Shine, En-Ting Lin, Xin-Wen Huang, Po-Tang Wu, and Yi-Lin Yang. 2022. "High-Temperature Coefficient of Resistance in MoxW1−xS2 Thin Film" Applied Sciences 12, no. 10: 5110. https://doi.org/10.3390/app12105110
APA StyleKo, T.-S., Lin, E.-T., Huang, X.-W., Wu, P.-T., & Yang, Y.-L. (2022). High-Temperature Coefficient of Resistance in MoxW1−xS2 Thin Film. Applied Sciences, 12(10), 5110. https://doi.org/10.3390/app12105110