The Benefits of Video Games on Brain Cognitive Function: A Systematic Review of Functional Magnetic Resonance Imaging Studies
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Inclusion Criteria and Study Selection
2.3. Data Extraction
3. Results
3.1. Study Characteristics
3.2. fMRI Quality
4. Discussion
4.1. Effects of Strategy Video Games on Brain Cognitive Function
4.2. Effects of Action Video Games on Cognitive Function of the Brain
4.3. Effects of Comprehensive Video Games on Brain Cognitive Function
4.4. Effects of Specific Video Games on Brain Cognitive Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, D.; Ma, W.; Liu, T.; Yan, Y.; Yao, D. Electronic-Sports Experience Related to Functional Enhancement in Central Executive and Default Mode Areas. Neural Plast. 2019, 2019, 1940123. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, N.; Sandberg, A. Cognitive enhancement: Methods, ethics, regulatory challenges. Sci. Eng. Ethics 2009, 15, 311–341. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Active ageing: A policy framework. Aging Male 2003, 5, 1–37. [Google Scholar]
- Kontis, V.; Bennett, J.E.; Mathers, C.D.; Li, G.; Foreman, K.; Ezzati, M. Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. Lancet 2017, 389, 1323–1335. [Google Scholar] [CrossRef] [Green Version]
- Rocca, W.A.; Petersen, R.C.; Knopman, D.S.; Hebert, L.E.; Evans, D.A.; Hall, K.S.; Gao, S.; White, L.R. Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement. J. Alzheimers Assoc. 2011, 7, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Bassuk, S.S.; Wypij, D.; Berkmann, L.F. Cognitive Impairment and Mortality in the Community-dwelling Elderly. Am. J. Epidemiol. 2000, 151, 676–688. [Google Scholar] [CrossRef]
- Perna, L.; Wahl, H.W.; Mons, U.; Saum, K.U.; Holleczek, B.; Brenner, H. Cognitive impairment, all-cause and cause-specific mortality among non-demented older adults. Age Ageing 2015, 44, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Gale, C.R.; Martyn, C.N.; Cooper, C. Cognitive impairment and mortality in a cohort of elderly people. BMJ 1996, 312, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Hertzog, C.; Kramer, A.F.; Wilson, R.S.; Lindenberger, U. Enrichment Effects on Adult Cognitive Development: Can the Functional Capacity of Older Adults Be Preserved and Enhanced? Psychol. Sci. Public Interest 2010, 9, 1–65. [Google Scholar] [CrossRef] [Green Version]
- Wouters, P.; Van Nimwegen, C.; Van Oostendorp, H.; Van Der Spek, E.D. A Meta-Analysis of the Cognitive and Motivational Effects of Serious Games. J. Educ. Psychol. 2013, 105, 249. [Google Scholar] [CrossRef] [Green Version]
- Toril, P.; Reales, J.M.; Ballesteros, S. Video game training enhances cognition of older adults: A meta-analytic study. Psychol. Aging 2014, 29, 706–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams, T.A.; Foussias, G.; Zawadzki, J.A.; Marshe, V.S.; Siddiqui, I.; Müller, D.J.; Wong, A.H. The Effects of Video Games on Cognition and Brain Structure: Potential Implications for Neuropsychiatric Disorders. Curr. Psychiatry Rep. 2015, 17, 71. [Google Scholar] [CrossRef] [PubMed]
- Koepp, M.J.; Gunn, R.N.; Lawrence, A.D.; Cunningham, V.J.; Dagher, A.; Jones, T.; Grasby, P.M. Evidence for striatal dopamine release during a video game. Nature 1998, 393, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Ikeda, H.; Kasahara, K.; Kato, R.; Tsubomi, H.; Sugawara, S.K.; Watanabe, K. Larger Right Posterior Parietal Volume in Action Video Game Experts: A Behavioral and Voxel-Based Morphometry (VBM) Study. PLoS ONE 2013, 8, e66998. [Google Scholar] [CrossRef] [Green Version]
- Kühn, S.; Gleich, T.; Lorenz, R.C.; Lindenberger, U.; Gallinat, J. Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a commercial video game. Mol. Psychiatry 2014, 19, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Brilliant, T.D.; Nouchi, R.; Kawashima, R. Does Video Gaming Have Impacts on the Brain: Evidence from a Systematic Review. Brain Sci. 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.-Y.; Jia, X.-Z.; Wang, P.; Zhang, J.-X.; Huang, S.; Li, H.-J. Intrinsic Resting-State Activity in Older Adults With Video Game Experience. Front. Aging Neurosci. 2019, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Richlan, F.; Schubert, J.; Mayer, R.; Hutzler, F.; Kronbichler, M. Action video gaming and the brain: fMRI effects without behavioral effects in visual and verbal cognitive tasks. Brain Behav. 2018, 8, e877. [Google Scholar] [CrossRef] [Green Version]
- Gorbet, D.J.; Sergio, L.E.; Martinuzzi, A. Move faster, think later: Women who play action video games have quicker visually-guided responses with later onset visuomotor-related brain activity. PLoS ONE 2018, 13, e189110. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhu, X.T.; Qi, Z.; Huang, S.; Li, H.J. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study. Front. Aging Neurosci. 2017, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Kang, D.W.; Kim, D.; Kim, H.J.; Sasaki, Y.; Watanabe, T. Real-Time Strategy Video Game Experience and Visual Perceptual Learning. J. Neurosci. 2015, 35, 10485–10492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, D.; He, H.; Liu, D.; Ma, W.; Dong, L.; Luo, C.; Yao, D. Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Sci. Rep. 2015, 5, 9763. [Google Scholar] [CrossRef] [PubMed]
- Bavelier, D.; Achtman, R.; Mani, M.; Föcker, J. Neural bases of selective attention in action video game players. Vis. Res. 2012, 61, 132–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granek, J.A.; Gorbet, D.J.; Sergio, L.E. Extensive video-game experience alters cortical networks for complex visuomotor transformations. Cortex 2010, 46, 1165–1177. [Google Scholar] [CrossRef]
- Momi, D.; Smeralda, C.L.; Di Lorenzo, G.; Neri, F.; Rossi, S.; Rossi, A.; Santarnecchi, E. Long-lasting connectivity changes induced by intensive first-person shooter gaming. Brain Imaging Behav. 2020, 15, 1518–1532. [Google Scholar] [CrossRef] [PubMed]
- Kral, T.R.; Stodola, D.E.; Birn, R.M.; Mumford, J.A.; Solis, E.; Flook, L.; Davidson, R.J. Neural correlates of video game empathy training in adolescents: A randomized trial. NPJ Sci. Learn. 2018, 3, 13. [Google Scholar] [CrossRef]
- Nikolaidis, A.; Voss, M.W.; Elee, H.; Vo, L.T.K.; Kramer, A.F. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Front. Hum. Neurosci. 2014, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Martínez, K.; Solana, A.B.; Burgaleta, M.; Hernández-Tamames, J.A.; Álvarez-Linera, J.; Román, F.J.; Alfayate, E.; Privado, J.; Escorial, S.; Quiroga, M.A.; et al. Changes in resting-state functionally connected parietofrontal networks after videogame practice. Hum. Brain Mapp. 2013, 34, 3143–3157. [Google Scholar] [CrossRef] [Green Version]
- Poldrack, R.A.; Fletcher, P.C.; Henson, R.N.; Worsley, K.J.; Brett, M.; Nichols, T.E. Guidelines for reporting an fMRI study. NeuroImage 2008, 40, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Karim, H.; Schmidt, B.; Dart, D.; Beluk, N.; Huppert, T. Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait Posture 2012, 35, 367–372. [Google Scholar] [CrossRef] [Green Version]
No. | Study | Number | Age | Imaging Modality | Game Type | During | Task/Stimuli |
---|---|---|---|---|---|---|---|
Horizontal study | |||||||
1 | Gong (2019) | TRVGP: 26 (F: 0) LRVGP: 34 (F: 0 | 25.35 ± 2.39 24.59 ± 2.13 | Resting-state fMRI | Action real-time strategy game | - | - |
2 | Hou (2019) | VGP: 15 (F: 9) NVGP: 18 (F: 6) | 55–74 y 55–78 y | Resting-state fMRI | - | - | - |
3 | Richlan (2018) | VGP: 14 (F: 7) NVGP: 14 (F: 7) | 22.50 ± 2.96 23.57 ± 3.20 | Task-state fMRI | First and third person shooters games | - | Visuospatial task and a verbal letter detection task (attentional control) |
4 | Gorber (2018) | VGP: 10 (F: 10) NVGP: 10 (F: 10) | 26.50 ± 7.74 23.90 ± 4.86 | Task-state fMRI | First-person shooters games, fighting games, and action-adventure games | - | Visuomotor task (visually-guided responses) |
5 | Wang (2017) | VGP: 20 (F: 10) NVGP: 20 (F: 6) | 65.00 ± 5.97 63.80 ± 6.66 | Task-state fMRI | Real-time Strategy games | - | Flanker task (executive function) |
6 | Kim (2015) | VGP: 16 (F: 0) NVGP: 15 (F: 0) | 29.70 ± 4.20 28.30 ± 4.10 | Task-state fMRI | Real-time strategy games | - | Texture discrimination task (visual perceptual learning) |
7 | Gong (2015) | VGP: 27 (F: NVGP: 30 (F: | 23.26 ± 0.40 22.30 ± 0.38 | Resting-state fMRI | Action games | - | - |
8 | Bavilier (2012) | VGP: 12 (F: 0) NVGP: 14 (F: 0) | M: 25.50 y | Task-state fMRI | First person shooters action games | - | Visual search task (selective attention) |
9 | Granek (2010) | VGP: 13 (F: 0) NVGP: 13 (F: 0) | 24.00 ± 3.10 26.00 ± 4.60 | Task-state fMRI | Video games | - | Visuomotor tasks (visuomotor transformations) |
Intervention study | |||||||
10 | Momo (2020) | EG: 25 (F: 9) CG: 15 (F: 6) | 24.2 ± 2.60 26.6 ± 3.20 | Resting-state fMRI | First-person shooters games | 30 h | - |
11 | Kral (2018) | EG: 34 (F: 14) CG: 40 (F: 13) | 12.90 y 12.80 y | Resting-state fMRI | Videogame with empathy training mechanics | - | Empathic accuracy task (empathy) |
12 | Nikolaidis (2014) | EG: 45 (F: 27) | 21.74 ± 2.09 | Resting-state fMRI | Videogame with a working memory component | 30 h | - |
13 | Martinez (2013) | EG: 20 (F: 20) CG: 20 (F: 20) | 19.60 ± 3.69 18.30 ± 0.48 | Resting-state fMRI | Videogame | 16 h | - |
No. | Study | Regions of Significant Differences in Levels of Blood-Oxygen-Level-Dependent (BOLD) Signal |
---|---|---|
Horizontal study | ||
1 | Gong (2019) | Functional connectivity of default mode areas(bilateral posterior cingulate cortex, parahippocampal gyrus right angular gyrus) is enhanced. The functional connectivity of the central executive network (bilateral dorsolateral prefrontal cortex, left superior frontal gyrus Left middle frontal gyrus) is enhanced. |
2 | Hou (2019) | The amplitude of low-frequency fluctuation value in the left inferior occipital gyrus left cerebellum and left lingual gyrus increased significantly. |
3 | Richlan (2018) | The activation of the frontoparietal regions(left middle paracingulate cortex, the left superior frontal sulcus, the opercular part of the left inferior frontal gyrus, and the left and right posterior parietal cortex) is increased. |
4 | Gorber (2018) | The activation of the cuneus, middle occipital gyrus, and cerebellum are decreased. |
5 | Wang (2017) | Functional connectivity between the left paracentral lobule and right hippocampus left supramarginal gyrus and right dorsolateral prefrontal cortex is enhanced. Functional connectivity between the right precuneus and angular gyrus is decreased. |
6 | Kim (2015) | White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus and anterior cingulate cortex is increased. |
7 | Bavilier (2012) | The activation of the visual motion-sensitive area is decreased. |
8 | Gong (2015) | Functional connectivity between anterior and posterior insular subregions and functional integration between the attentional and sensorimotor networks is increased. |
9 | Granek (2010) | The activation of rostral prefrontal cortex activity(ipsilateral superior frontal gyrus), dorsolateral prefrontal cortex (the middle frontal gyrus and the inferior frontal gyrus), and bilateral ventrolateral prefrontal cortex (the inferior frontal gyrus, the ventro-orbital frontal gyrus, and the rostral lateral sulcus) are increased. |
Intervention study | ||
10 | Momo (2020) | Functional connectivity between the left thalamus and left parahippocampal gyrus is increased. |
11 | Kral (2018) | The activation of empathic accuracy-related activation in the right temporoparietal junction is increased. Functional connectivity in empathy-related brain circuits (posterior cingulate–medial prefrontal cortex; medial prefrontal cortex) is increased. |
12 | Nikolaidis (2014) | The activation of brain regions of working memory(superior parietal lobe, caudate, postcentral gyrus, precuneus, supramarginal gyrus, temporal fusiform cortex, and the insular cortex) is increased. |
13 | Martinez (2013) | Almost all relevant changes were localized in the left hemisphere. Functional connectivity between parietal, prefrontal, and temporal regions is increased. |
No. | Study | fMRI Design | Sample Handedness Reported | Sample Gender Reported | Scan Rejection Mentioned | Scan Rejection Reason | Volumes Acquired per Session | Software Package Specified | Method for Motion Correction Described? | Method for Multiple Comparison Correction Described? | Type of Correction Applied | First Level Contrasts Described | Second Level Contrasts Described |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Horizontal study | |||||||||||||
1 | Gong (2019) | 1 | 1 | 1 | n | n | 1 | 1 | 0 | 1 | voxel wise | unclear | unclear |
2 | Hou (2019) | 1 | 0 | 1 | n | n | 0 | 1 | 1 | 1 | voxel wise | unclear | unclear |
3 | Richlan (2018) | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | voxel wise | 1 | 1 |
4 | Gorber (2018) | 1 | 1 | 1 | 0 | n | 0 | 1 | 1 | 1 | voxel wise | 1 | unclear |
5 | Wang (2017) | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | voxel wise | 1 | 1 |
6 | Kim (2015) | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | voxel wise | unclear | unclear |
7 | Bavilier (2012) | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | voxel wise | unclear | unclear |
8 | Gong (2015) | 1 | 0 | 1 | n | n | 1 | 1 | 1 | 0 | voxel wise | unclear | unclear |
9 | Granek (2010) | 1 | 1 | 1 | n | n | 1 | 1 | 1 | 1 | voxel wise | unclear | unclear |
Intervention study | |||||||||||||
10 | Momo (2020) | 1 | 1 | 1 | n | n | 1 | 1 | 1 | 1 | voxel wise | 1 | 1 |
11 | Kral (2018) | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | voxel wise | unclear | unclear |
12 | Nikolaidis (2014) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | voxel wise | unclear | unclear |
13 | Martinez (2013) | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | voxel wise | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Cheng, C. The Benefits of Video Games on Brain Cognitive Function: A Systematic Review of Functional Magnetic Resonance Imaging Studies. Appl. Sci. 2022, 12, 5561. https://doi.org/10.3390/app12115561
Huang H, Cheng C. The Benefits of Video Games on Brain Cognitive Function: A Systematic Review of Functional Magnetic Resonance Imaging Studies. Applied Sciences. 2022; 12(11):5561. https://doi.org/10.3390/app12115561
Chicago/Turabian StyleHuang, He, and Chuanyin Cheng. 2022. "The Benefits of Video Games on Brain Cognitive Function: A Systematic Review of Functional Magnetic Resonance Imaging Studies" Applied Sciences 12, no. 11: 5561. https://doi.org/10.3390/app12115561
APA StyleHuang, H., & Cheng, C. (2022). The Benefits of Video Games on Brain Cognitive Function: A Systematic Review of Functional Magnetic Resonance Imaging Studies. Applied Sciences, 12(11), 5561. https://doi.org/10.3390/app12115561