Design of the Crawler Units: Toward the Development of a Novel Hybrid Platform for Infrastructure Inspection
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Hybrid Platform Overview
2.2. The Crawler Unit: Overview
2.3. The Crawler Unit: Kinematics
2.4. Electronics and Control
3. Results
3.1. Forward Motion
3.2. The C-Configuration
3.3. The S-Configuration
3.4. Climbing Ramps
3.5. Uneven Terrains
3.6. Lifting Modules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DoFs | Degrees Of Freedom |
CoM | Center of Mass |
References
- Maurtua, I.; Susperregi, L.; Fernández, A.; Tubío, C.; Perez, C.; Rodríguez, J.; Felsch, T.; Ghrissi, M. MAINBOT—Mobile Robots for Inspection and Maintenance in Extensive Industrial Plants. Energy Procedia 2014, 49, 1810–1819. [Google Scholar] [CrossRef] [Green Version]
- Soldan, S.; Welle, J.; Barz, T.; Kroll, A.; Schulz, D. Towards Autonomous Robotic Systems for Remote Gas Leak Detection and Localization in Industrial Environments. In Field and Service Robotics; Yoshida, K., Tadokoro, S., Eds.; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 233–247. ISBN 978-3-642-40685-0. [Google Scholar] [CrossRef]
- Merriaux, P.; Rossi, R.; Boutteau, R.; Vauchey, V.; Qin, L.; Chanuc, P.; Rigaud, F.; Roger, F.; Decoux, B.; Savatier, X. The vikings autonomous inspection robot: Competing in the argos challenge. IEEE Robot. Autom. Mag. 2018, 26, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Nagatani, K.; Endo, D.; Watanabe, A.; Koyanagi, E. Design and development of explosion-proof tracked vehicle for inspection of offshore oil plant. In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 531–544. [Google Scholar]
- Zwicker, E.; Zesch, W.; Moser, R. A modular inspection robot platform for power plant applicationst. In Proceedings of the 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Caprari, G.; Breitenmoser, A.; Fischer, W.; Hürzeler, C.; Tâche, F.; Siegwart, R.; Nguyen, O.; Moser, R.; Schoeneich, P.; Mondada, F. Highly compact robots for inspection of power plants. J. Field Robot. 2012, 29, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Pistone, A.; Canali, C.; Gloriani, C.; Leggieri, S.; Guardiani, P.; Caldwell, D.G. Reconfigurable inspection robot for industrial applications. Procedia Manuf. 2019, 38, 597–604. [Google Scholar] [CrossRef]
- Pignone, E.; Pistone, A.; Canali, C.; D’Agostino, F.; Martorana, G. Design and Validation of a Novel Turbogenerator’s Robotized Inspection System. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 84966, p. V004T05A010. [Google Scholar]
- Canali, C.; Pistone, A.; Ludovico, D.; Guardiani, P.; Gagliardi, R.; De Mari Casareto Dal Verme, L.; Sofia, G.; Caldwell, D.G. Design of a Novel Long-Reach Cable-Driven Hyper-Redundant Snake-like Manipulator for Inspection and Maintenance. Appl. Sci. 2022, 12, 3348. [Google Scholar] [CrossRef]
- Tur, J.M.M.; Garthwaite, W. Robotic devices for water main in-pipe inspection: A survey. J. Field Robot. 2010, 4, 491–508. [Google Scholar]
- Mills, G.H.; Jackson, A.E.; Richardson, R.C. Advances in the inspection of unpiggable pipelines. Robotics 2017, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S. Snake-like Locomotors and Manipulators: Biologically Inspired Robots; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Schempf, H.; Mutschler, E.; Gavaert, A.; Skoptsov, G.; Crowley, W. Visual and nondestructive evaluation inspection of live gas mains using the Explorer™ family of pipe robots. J. Field Robot. 2010, 27, 217–249. [Google Scholar] [CrossRef] [Green Version]
- Fjerdingen, S.A.; Liljebäck, P.; Transeth, A.A. A snake-like robot for internal inspection of complex pipe structures (PIKo). In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 5665–5671. [Google Scholar]
- Fischer, W.; Tâche, F.; Siegwart, R. Inspection system for very thin and fragile surfaces, based on a pair of wall climbing robots with magnetic wheels. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1216–1221. [Google Scholar]
- Couceiro, M.S.; Portugal, D.; Rocha, R.P.; Ferreira, N.M.F. Marsupial teams of robots: Deployment of miniature robots for swarm exploration under communication constraints. Robotica 2014, 32, 1017–1038. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Cao, Z.; Xu, L.; Zhou, C.; Xu, D. The design of a mother robot for marsupial robotic system. In Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 675–679. [Google Scholar]
- Leggieri, S.; Canali, C.; Cannella, F.; Caldwell, D.G. Novel Modular Self-Reconfigurable Robot for Pipe and Plant Inspection. In Proceedings of the ICAS 2020: The Sixteenth International Conference on Autonomic and Autonomous Systems, Lisbon, Portugal, 27 September–1 October 2020; pp. 36–40. [Google Scholar]
- Leggieri, S.; Canali, C.; Cannella, F.; Caldwell, D.G. Self-reconfigurable hybrid robot for inspection. In Proceedings of the 2020 I-RIM Conference, Virtual, 10–13 December 2020; pp. 268–269. [Google Scholar] [CrossRef]
- Leggieri, S.; Canali, C.; Gagliardi, R.; Cannella, F.; Caldwell, D.G. Hybrid Self-Reconfigurable Platform for Inspection: The Crawler Unit. In Proceedings of the 2021 I-RIM Conference, Roma, Italy, 8–10 October 2021; pp. 53–55. [Google Scholar] [CrossRef]
- Leggieri, S.; Canali, C.; Cannella, F.; Lee, J.; Caldwell, D.G. Preliminary Study on the Crawler Unit of a Novel Self-Reconfigurable Hybrid Platform for Inspection. In Proceedings of the 20th International Conference on Advanced Robotics, ICAR 2021, Ljubljana, Slovenia, 6–10 December 2021; pp. 77–82. [Google Scholar]
- Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-540-23957-4. [Google Scholar]
- Sciavicco, L.; Siciliano, B. Modelling and Control of Robot Manipulators; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Real Time Engineers Ltd. FreeRTOS. Available online: https://www.freertos.org/ (accessed on 20 May 2022).
Crawler Unit Version One | |||
---|---|---|---|
Back Module | Central Module | ||
Length m; | Length m; | ||
Height m; | Height m; | ||
Width m; | Width m; | ||
Mass Kg. | Mass Kg. | ||
Front Module | Docking Module | ||
Length m; | Length m; | ||
Height m; | Height m; | ||
Width m; | Width m; | ||
Mass Kg. | Mass Kg. | ||
TOTAL MASS = Kg; | TOTAL LENGTH = m. |
Crawler Unit Version Two | |||
---|---|---|---|
Back Module | Central Module | ||
Length m; | Length m; | ||
Height m; | Height m; | ||
Width m; | Width m; | ||
Mass Kg. | Mass Kg. | ||
Front Module | Docking Module | ||
Length m; | Length m; | ||
Height m; | Height m; | ||
Width m; | Width m; | ||
Mass Kg. | Mass Kg. | ||
TOTAL MASS = Kg; | TOTAL LENGTH = m. |
Reference Frame | ||||
---|---|---|---|---|
0 | 0 | |||
0 | 0 | |||
0 | ||||
0 | 0 | |||
0 | ||||
0 | 0 | |||
0 | ||||
0 | ||||
0 | 0 | |||
0 | ||||
0 | 0 |
Herkulex Servomotor | Model: DRS-0602 |
Total weight: 145 g | |
Total Stall Torque: Nm | |
Reduction Ratio: 202:1 | |
Maxon Motor | Model: DCX12L |
Total weight: g | |
Total Stall Torque: Nm | |
Reduction Ratio: 83:1 | |
Arduino Board | Model: Mega 2560 |
Microcontroller: ATmega 2560 | |
Clock Frequency: 16 MHz | |
L298N Motor Driver | Driver: L298N Dual H Bridge |
Motor Channels: 2 | |
Driver Voltage: 5–35 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leggieri, S.; Canali, C.; Caldwell, D.G. Design of the Crawler Units: Toward the Development of a Novel Hybrid Platform for Infrastructure Inspection. Appl. Sci. 2022, 12, 5579. https://doi.org/10.3390/app12115579
Leggieri S, Canali C, Caldwell DG. Design of the Crawler Units: Toward the Development of a Novel Hybrid Platform for Infrastructure Inspection. Applied Sciences. 2022; 12(11):5579. https://doi.org/10.3390/app12115579
Chicago/Turabian StyleLeggieri, Sergio, Carlo Canali, and Darwin G. Caldwell. 2022. "Design of the Crawler Units: Toward the Development of a Novel Hybrid Platform for Infrastructure Inspection" Applied Sciences 12, no. 11: 5579. https://doi.org/10.3390/app12115579
APA StyleLeggieri, S., Canali, C., & Caldwell, D. G. (2022). Design of the Crawler Units: Toward the Development of a Novel Hybrid Platform for Infrastructure Inspection. Applied Sciences, 12(11), 5579. https://doi.org/10.3390/app12115579