An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method
Abstract
:1. Introduction
2. Quadratic Programming Subproblem
2.1. Optimization Model
2.2. Majorization–Minimization Algorithm
2.3. Quadratic Programming Subproblem
3. Solution of Subproblem
3.1. QPOC Method
3.2. IPC Method
4. Numerical Examples
4.1. MBB Beam
4.1.1. Optimal Solution and Optimized Design
4.1.2. Convergence Rate
4.1.3. Calculation Cost
4.2. Cantilever Beam
5. Conclusions and Discussion
- We proposed a novel way to calculate the Hessian matrix for structural topology optimization with minimum compliance problems. The Hessian matrix could be given almost simultaneously when solving the first derivative, and the calculation cost was almost negligible.
- The QP subproblem is formed by the second-order Taylor expansion of the original problem, which is convex separable and easy to be imported into the QP solver. The convergence rate can be controlled by the curvature parameter.
- To solve the QP subproblem, we proposed the QPOC method. The derivation of the update formula of this method is supported by rigorous mathematical theory, while the update formula of the OC method is heuristic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Wang, Q.; Wang, C.; Gong, P.; Shi, Y.; Yu, Y.; Liu, Z. Topology Optimization Design and Experimental Research of a 3D-Printed Metal Aerospace Bracket Considering Fatigue Performance. Appl. Sci. 2021, 11, 6671. [Google Scholar] [CrossRef]
- Vantyghem, G.; De Corte, W.; Shakour, E.; Amir, O. 3D printing of a post-tensioned concrete girder designed by topology optimization. Automat. Constr. 2020, 112, 103084. [Google Scholar] [CrossRef]
- Simonetti, H.L.; Almeida, V.S.; de Assis Das Neves, F.; Del Duca Almeida, V.; de Oliveira Neto, L. Reliability-Based Topology Optimization: An Extension of the SESO and SERA Methods for Three-Dimensional Structures. Appl. Sci. 2022, 12, 4220. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Method. Appl. M. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Method. Appl. M. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhong, W. Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework. J. Appl. Mech. 2014, 81, 081009. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech. 2008, 43, 393. [Google Scholar] [CrossRef]
- Ananiev, S. On Equivalence Between Optimality Criteria and Projected Gradient Methods with Application to Topology Optimization Problem. Multibody Syst. Dyn. 2005, 13, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Chen, Z.; Qiu, H.; Gao, L. A PDOC Method for Topology Optimization Design, International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef] [Green Version]
- Gomes, F.A.; Senne, T.A. An SLP algorithm and its application to topology optimization. Comput. Appl. Math. 2011, 30, 53–89. [Google Scholar] [CrossRef]
- Park, S.; Jeong, S.H.; Yoon, G.H.; Groenwold, A.A.; Choi, D. A globally convergent sequential convex programming using an enhanced two-point diagonal quadratic approximation for structural optimization. Struct. Multidiscip. Optim. 2014, 50, 739–753. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Meth. Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Svanberg, K. A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations. SIAM J. Optim. 2002, 12, 555–573. [Google Scholar] [CrossRef] [Green Version]
- Etman, L.F.P.; Groenwold, A.A.; Rooda, J.E. First-order sequential convex programming using approximate diagonal QP subproblems. Struct. Multidiscip. Optim. 2012, 45, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Rong, J.H.; Tang, Z.L.; Xie, Y.M.; Li, F.Y. Topological optimization design of structures under random excitations using SQP method. Eng. Struct. 2013, 56, 2098–2106. [Google Scholar] [CrossRef]
- Lewis, A.S.; Overton, M.L. Nonsmooth optimization via quasi-Newton methods. Math. Program. 2013, 141, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Labanda, S.; Stolpe, M. An efficient second-order SQP method for structural topology optimization. Struct. Multidiscip. Optim. 2016, 53, 1315–1333. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.R.; Lange, K. A Tutorial on MM Algorithms. Am. Stat. 2004, 58, 30–37. [Google Scholar] [CrossRef]
- Rozvany, G.I.; Zhou, M.; Birker, T. Generalized shape optimization without homogenization. Struct. Optim. 1992, 4, 250–252. [Google Scholar] [CrossRef]
- Wu, T.T.; Lange, K. The MM alternative to EM. Stat. Sci. 2010, 25, 492–505. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning. IEEE T. Signal Proces. 2017, 65, 794–816. [Google Scholar] [CrossRef]
- Sauer, T. Numerical Analysis, 2nd ed.; Addison-Wesley Publishing Company: Boston, MA, USA, 2011. [Google Scholar]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011, 43, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Haber, R.B.; Jog, C.S.; Bends, E.M.P. A new approach to variable-topology shape design using a constraint on perimeter. Struct. Optim. 1996, 11, 1–12. [Google Scholar] [CrossRef]
- Mehrotra, S. On the Implementation of a Primal-Dual Interior Point Method. SIAM J. Optim. 1992, 2, 575–601. [Google Scholar] [CrossRef]
- Wright, S.J.; Tenny, M.J. A feasible trust-region sequential quadratic programming algorithm. SIAM J. Optim. 2004, 14, 1074–1105. [Google Scholar] [CrossRef] [Green Version]
- Serafini, T.; Zanghirati, G.; Zanni, L. Gradient projection methods for quadratic programs and applications in training support vector machines. Optim. Methods Softw. 2005, 20, 353–378. [Google Scholar] [CrossRef] [Green Version]
- Sigmund, O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424. [Google Scholar] [CrossRef] [Green Version]
- Zuo, K.; Chen, L.; Zhang, Y.; Yang, J. Study of key algorithms in topology optimization. Int. J. Adv. Manuf. Technol. 2007, 32, 787–796. [Google Scholar] [CrossRef]
Method | Figure 3 | Iterations | Compliance | Time Cost (s) | Per_Time Cost (s) | ||||
---|---|---|---|---|---|---|---|---|---|
OC | None | a | 4.8 | 0.5 | 93 | 219.2 | 26.5 | 4.0 | 0.04 |
QPOC | 1 | b | 4.8 | 0.5 | 101 | 219.2 | 26.5 | 4.2 | 0.04 |
1.5 | None | 4.8 | 0.5 | 72 | 219.5 | 26.8 | 3.1 | 0.04 | |
2 | c | 4.8 | 0.5 | 65 | 220.5 | 27.3 | 2.8 | 0.04 | |
3 | d | 4.8 | 0.5 | 64 | 222.4 | 28.4 | 2.7 | 0.04 | |
IPC | 1 | e | 4.8 | 0.5 | 200 | 209.0 | 15.2 | 49.2 | 0.25 |
1.5 | f | 3.6 | 0.5 | 200 | 202.2 | 11.7 | 41.2 | 0.21 | |
2 | g | 4.8 | 0.5 | 200 | 211.4 | 18.0 | 38.7 | 0.19 | |
2 | h | 2.4 | 0.5 | 137 | 199.1 | 8.7 | 27.0 | 0.20 | |
2 | i | 2 | 0.5 | 200 | 196.1 | 8.5 | 42.9 | 0.21 | |
3 | None | 2.2 | 0.5 | 142 | 201.4 | 9.6 | 29.0 | 0.20 |
Meshes | Method | Figure 7 | Iterations | Compliance | Time Cost (s) | Per_Time Cost (s) | |||
---|---|---|---|---|---|---|---|---|---|
60 × 30 | MMA | a | 1.6 | 0.489 | 200 | 87.1 | 25.6 | 9.3 | 0.05 |
IPC | d | 1.6 | 0.500 | 48 | 70.7 | 7.1 | 3.7 | 0.07 | |
80 × 40 | MMA | b | 2.4 | 0.491 | 200 | 87.5 | 27.9 | 24.7 | 0.12 |
IPC | e | 2.4 | 0.500 | 47 | 71.0 | 8.0 | 6.2 | 0.13 | |
120 × 60 | MMA | c | 3.6 | 0.500 | 200 | 78.9 | 34.8 | 44.2 | 0.22 |
IPC | f | 3.6 | 0.496 | 116 | 67.9 | 9.1 | 42.3 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Zhang, Q.; Meng, H. An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method. Appl. Sci. 2022, 12, 6304. https://doi.org/10.3390/app12136304
Liao W, Zhang Q, Meng H. An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method. Applied Sciences. 2022; 12(13):6304. https://doi.org/10.3390/app12136304
Chicago/Turabian StyleLiao, Weilong, Qiliang Zhang, and Huanli Meng. 2022. "An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method" Applied Sciences 12, no. 13: 6304. https://doi.org/10.3390/app12136304
APA StyleLiao, W., Zhang, Q., & Meng, H. (2022). An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method. Applied Sciences, 12(13), 6304. https://doi.org/10.3390/app12136304