Influence of Cognitive Task Difficulty in Postural Control and Hemodynamic Response in the Prefrontal Cortex during Static Postural Standing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Task Protocol
2.3. CoP Analysis
2.4. fNIR Data Acquisition and Analysis
2.5. Dual-Task Interference
2.6. Statistical Analysis
3. Results
3.1. Cognitive Task Performance
3.2. Postural Control
3.3. Hemodynamic Changes in the Prefrontal Cortex
3.4. Dual-Task Interference
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Aging 2006, 35 (Suppl. 2), 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Pashler, H. Dual-Task Interference in Simple Tasks: Data and Theory. Phychological. Bull. 1994, 116, 220–244. [Google Scholar] [CrossRef] [PubMed]
- Leone, C.; Feys, P.; Moumdjian, L.; D’Amico, E.; Zappia, M.; Patti, F. Cognitive-motor dual-task interference: A systematic review of neural correlates. Neurosci. Biobehav. Rev. 2017, 75, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Nohelova, D.; Bizovska, L.; Vuillerme, N. Gait Variability and Complexity during Single and Dual-Task Walking on Different Surfaces in Outdoor Environment. Sensors 2021, 21, 4792. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I.; Effenberg, A.O. Effects of dual tasks and dual-task training on postural stability: A systematic review and meta-analysis. Clin. Interv. Aging 2017, 12, 557–577. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Montecinos, C.; Carrasco, J.J.; Guzmán-González, B.; Soto-Arellano, V.; Calatayud, J.; Chimeno-Hernández, A.; Querol, F.; Pérez-Alenda, S. Effects of performing dual tasks on postural sway and postural control complexity in people with haemophilic arthropathy. Haemophilia 2020, 26, e81–e87. [Google Scholar] [CrossRef]
- Potvin-Desrochers, A.; Richer, N.; Lajoie, Y. Cognitive tasks promote automatization of postural control in young and older adults. Gait Posture 2017, 57, 40–45. [Google Scholar] [CrossRef]
- Huxhold, O.; Li, S.C.; Schmiedek, F.; Lindenberger, U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 2006, 69, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Maylor, E.A.; Wing, A.M. Age differences in postural stability are increased by additional cognitive demands. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 1996, 51, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Prado, J.M.; Stoffregen, T.A.; Duarte, M. Postural Sway during Dual Tasks in Young and Elderly Adults. Gerontology 2007, 57, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.C.; Hoffman, M.A. Postural control: Visual and cognitive manipulations. Gait Posture 2001, 13, 41–48. [Google Scholar] [CrossRef]
- Lanzarin, M.; Parizzoto, P.; Libardoni, T.D.C.; Sinhorim, L.; Tavares, G.M.S.; Santos, G.M. The influence of dual-tasking on postural control in young adults. Fisioter. E Pesqui 2015, 22, 61–68. [Google Scholar]
- Bürki, C.N.; Bridenbaugh, S.A.; Reinhardt, J.; Stippich, C.; Kressig, R.W.; Blatow, M. Imaging gait analysis: An fMRI dual task study. Wiley Brain Behav. 2017, 7, e00724. [Google Scholar] [CrossRef]
- Little, C.E.; Woollacott, M. EEG measures reveal dual-task interference in postural performance in young adults. Exp. Brain Res. 2014, 233, 27–37. [Google Scholar] [CrossRef]
- Ouchi, Y.; Okada, H.; Yoshikawa, E.; Nobezawa, S.; Futatsubashi, M. Brain activation during maintenance of standing postures in humans. Brain 1999, 122, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Malouin, F.; Richards, C.L.; Jackson, P.L.; Dumas, F.; Doyon, J. Brain Activations During Motor Imagery of Locomotor-Related Tasks: A PET Study. Hum. Brain Mapp. 2003, 19, 47–62. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Thiers, A.; Hamacher, D.; Schega, L. Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks. Neurophotonics 2017, 4, 041403. [Google Scholar] [CrossRef] [Green Version]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5–29. [Google Scholar] [CrossRef]
- Shine, J.M.; Matar, E.; Ward, P.B.; Bolitho, S.J.; Pearson, M.; Naismith, S.L.; Lewis, S.J. Differential Neural Activation Patterns in Patients with Parkinson’s Disease and Freezing of Gait in Response to Concurrent Cognitive and Motor Load. PLoS ONE 2013, 8, e52602. [Google Scholar] [CrossRef] [Green Version]
- Leff, D.R.; Orihuela-Espina, F.; Elwell, C.E.; Athanasiou, T.; Delpy, D.T.; Darzi, A.W.; Yang, G.Z. NeuroImage Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 2011, 54, 2922–2936. [Google Scholar] [CrossRef] [PubMed]
- Villringer, A.; Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 1997, 20, 435–442. [Google Scholar] [CrossRef]
- Fuster, J.M. The Prefrontal Cortex—An Update: Time is of the Essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Marusic, U.; Taube, W.; Morrison, S.A.; Biasutti, L.; Grassi, B.; De Pauw, K.; Meeusen, R.; Pisot, R.; Ruffieux, J. Aging effects on prefrontal cortex oxygenation in a posture-cognition dual-task: An fNIRS pilot study. Eur. Rev. Aging Phys. Act. 2019, 16, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, H.; Kasubuchi, K.; Wakata, S.; Hiyamizu, M.; Morioka, S. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity. Biomed. Res. Int. 2016, 2016, 7053867. [Google Scholar] [CrossRef] [Green Version]
- Callicott, J.H.; Mattay, V.S.; Bertolino, A.; Finn, K.; Coppola, R.; Frank, J.A.; Goldberg, T.E.; Weinberger, D.R. Physiological Characteristics of Capacity Constraints in Working Memory as Revealed by Functional MRI. Cereb. Cortex. 1999, 9, 20–26. [Google Scholar] [CrossRef]
- Nurwulan, N.R.; Iridiastadi, H.; Jiang, B.C. A review of the effect on postural stability while using mobile phone. In Bridging Research and Good Practices towards Patients Welfare, Proceedings of the 4th International Conference on Healthcare Ergonomics and Patient Safety (HEPS), Taipei, Taiwan, 23–26 June 2014; CRC Press: Boca Raton, FL, USA, 2015; pp. 101–108. [Google Scholar]
- Deloitte. 2017 Global Mobile Consumer Survey: US Edition; Deloitte: London, UK, 2017. [Google Scholar]
- Lopez-Fernandez, O.; Kuss, D.J.; Romo, L.; Morvan, Y.; Kern, L. Self-reported dependence on mobile phones in young adults: A European cross-cultural empirical survey. J. Behav. Addict. 2017, 6, 168–177. [Google Scholar] [CrossRef]
- Wacks, Y.; Weinstein, A.M. Excessive Smartphone Use Is Associated With Health Problems in Adolescents and Young Adults. Front. Psychiatry 2021, 12, 669042. [Google Scholar] [CrossRef]
- Onofrei, R.R.; Amaricai, E.; Suciu, O.; David, V.L.; Rata, A.L.; Hogea, E. Smartphone use and postural balance in healthy young adults. Int. J. Environ. Res. Public Health 2020, 17, 3307. [Google Scholar] [CrossRef]
- Carpenter, M.G.; Frank, J.S.; Winter, D.A.; Peysar, G.W. Sampling duration effects on centre of pressure summary measures. Gait Posture 2001, 13, 35–40. [Google Scholar] [CrossRef]
- Bayot, M.; Dujardin, K.; Tard, C.; Defebvre, L.; Bonnet, C.T.; Allart, E.; Delval, A. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol. Clin. 2018, 48, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, Z. Task complexity: A review and conceptualization framework. Int. J. Ind. Ergon. 2012, 42, 553–568. [Google Scholar] [CrossRef]
- Campbell, D.J. Task Review Complexity: A Review and Analysis. Acad. Manag. Rev. 1988, 13, 40–52. [Google Scholar] [CrossRef]
- Ayaz, H.; Izzetoglu, M.; Shewokis, P.A.; Onaral, B. Sliding-window motion artifact rejection for Functional Near-Infrared Spectroscopy. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6567–6570. [Google Scholar]
- Izzetoglu, M.; Chitrapu, P.; Bunce, S.; Onaral, B. Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomed. Eng. Online 2010, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Doumas, M.; Smolders, C.; Krampe, R.T. Task prioritization in aging: Effects of sensory information on concurrent posture and memory performance. Exp. Brain Res. 2008, 187, 275–281. [Google Scholar] [CrossRef]
- Plummer, P.; Eskes, G.; Wallace, S.; Giuffrida, C.; Fraas, M.; Campbell, G.; Clifton, K.L.; Skidmore, E.R.; American Congress of Rehabilitation Medicine Stroke Networking Group Cognition Task Force. Cognitive-motor interference during functional mobility after stroke: State of the science and implications for future research. Arch. Phys. Med. Rehabil. 2013, 94, 2565–2574.e6. [Google Scholar] [CrossRef] [Green Version]
- Tachtsidis, F.; Scholkmann, I. False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward. Neurophotonics 2016, 3, 031405. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Maidan, I.; Bernad-Elazari, H.; Nieuwhof, F.; Reelick, M.; Giladi, N.; Hausdorff, J.M. Increased frontal brain activation during walking while dual tasking: An fNIRS study in healthy young adults. J. Neuroeng. Rehabil. 2014, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Salihu, A.T.; Hill, K.D.; Jaberzadeh, S. Effect of cognitive task complexity on dual task postural stability: A systematic review and meta-analysis. Exp. Brain Res. 2022, 240, 703–731. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, C.; Song, S.; Lee, G. Changes in gait pattern during multitask using smartphones. Work 2016, 53, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Han, C.; Lee, H.; Shin, D. Effects of a smartphone-based game on balance ability and dizziness in healthy adult individuals. J. Hum. Sport Exerc. 2019, 14, 793–801. [Google Scholar] [CrossRef]
- Szczygieł, E.; Piotrowski, K.; Golec, J.; Czechowska, D.; Masłoń, A.; Bac, A.; Golec, E. Head position influence on stabilographic variables. Acta Bioeng. Biomech. 2016, 18, 49–54. [Google Scholar] [PubMed]
- Kang, J.-H.; Park, R.-Y.; Lee, S.-J.; Kim, J.-Y.; Yoon, S.-R.; Jung, K.-I. The effect of the forward head posture on postural balance in long time computer based worker. Ann. Rehabil. Med. 2012, 36, 98–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydın, S. Cross-validated Adaboost Classification of Emotion Regulation Strategies Identified by Spectral Coherence in Resting-State. Neuroinformatics 2021, 1–13. [Google Scholar] [CrossRef]
- Wollesen, B.; Janssen, T.I.; Müller, H.; Voelcker-Rehage, C. Effects of cognitive-motor dual-task training on cognitive and physical performance in healthy children and adolescents: A scoping review. Acta Psychol. 2022, 224, 103498. [Google Scholar] [CrossRef]
Variables | Sample n = 35 | |
---|---|---|
Age (years) | 22.91 ± 3.84 | |
Height (m) | 1.72 ± 0.09 | |
Body mass (Kg) | 73.89 ± 16.19 | |
BMI (Kg/m2) | 24.85 ± 4.03 | |
Gender (%) | Male | n = 23; 65.7% |
Female | n = 12; 34.3% |
Outcomes | Single-Task | Easy DT | Difficult DT | p-Value 1 |
---|---|---|---|---|
TOTEX CoP | 2428.4 (2194.1–2873.0) | 2635.6 (2311.7–3033.2) | 2610.2 (2411.9–3123.8) | <0.001 * |
CoP-AP | 1837.5 (1648.6–2186.1) | 1960.6 (1779.8–2309.5) | 2028.2 (1817.7–2338.2) | <0.001 * |
CoP-ML | 1221.0 (1075.9–1427.9) | 1319.9 (1170.1–1529.2) | 1282.2 (1204.1–1497.6) | <0.001 * |
CEA | 224.6 (150.7–425.6) | 724.1 (236.2–1303.7) | 674.5 (326.2–1786.8) | <0.001 * |
MVELO CoP | 485.7 (438.9–574.7) | 527.2 (462.4–606.7) | 522.1 (482.4–624.8) | <0.001 * |
MVELO CoP-AP | 367.5 (329.7–437.2) | 392.1 (356.0–461.9) | 405.7 (363.6–467.7) | <0.001 * |
MVELO CoP-ML | 244.2 (215.2–285.6) | 264.0 (234.0–305.9) | 256.5 (240.8–299.5) | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva, M.; Paszkiel, S.; Vilas-Boas, J.P.; Castro, M.A. Influence of Cognitive Task Difficulty in Postural Control and Hemodynamic Response in the Prefrontal Cortex during Static Postural Standing. Appl. Sci. 2022, 12, 6363. https://doi.org/10.3390/app12136363
Saraiva M, Paszkiel S, Vilas-Boas JP, Castro MA. Influence of Cognitive Task Difficulty in Postural Control and Hemodynamic Response in the Prefrontal Cortex during Static Postural Standing. Applied Sciences. 2022; 12(13):6363. https://doi.org/10.3390/app12136363
Chicago/Turabian StyleSaraiva, Marina, Szczepan Paszkiel, João Paulo Vilas-Boas, and Maria António Castro. 2022. "Influence of Cognitive Task Difficulty in Postural Control and Hemodynamic Response in the Prefrontal Cortex during Static Postural Standing" Applied Sciences 12, no. 13: 6363. https://doi.org/10.3390/app12136363
APA StyleSaraiva, M., Paszkiel, S., Vilas-Boas, J. P., & Castro, M. A. (2022). Influence of Cognitive Task Difficulty in Postural Control and Hemodynamic Response in the Prefrontal Cortex during Static Postural Standing. Applied Sciences, 12(13), 6363. https://doi.org/10.3390/app12136363