Privacy-Preserving and Explainable AI in Industrial Applications
Abstract
:1. Introduction
2. Privacy Preservation in Industrial AI Applications
2.1. State of the Art in Privacy-Preserving AI
2.2. Review of Privacy-Preserving AI in Industrial Applications
3. Explainable Industrial AI Applications
3.1. The Black-Box Aspect of AI
3.2. State of the Art in Explainable AI
- saliency maps: elements in the input that have the largest influence in the prediction are identified (e.g., LIME);
- metric learning [49]: mapping out data structures by deriving a metric from a classifier (explicit Siamese networks are very popular);
- activation maximization: methods that are based on GAN.
3.3. Review of Explainable Industrial AI Applications
4. Industrial Impact and Remaining Challenges
4.1. Industrial Impact
- improving productivity: by predicting the quality parameters of the product [67], manufacturers can swiftly modify the industrial process setup to fit the updated requirements. Thus, they can save time by using an AI method to provide the best setup which meets their needs;
- improving maintenance: AI algorithms can be used to identify anomalies, and they can also handle large quantities of data [68]. By training an AI model to behave like a device in its normal state, it will be able to identify events that are abnormal (anomalies), which are dangerous, and which can lead to accidents. Prevention is a key factor in reducing them;
- increasing security: the use of privacy-preserving methods for artificial intelligence algorithms will increase security for the client, as well as the provider, making sure that no entity can have access to the model expertise while using the model to generate predictions [69];
- increasing trust in predictions: to improve the accuracy, the model complexity must be increased, and this leads to models being regarded as black boxes. To identify the logic behind a prediction, explainability methods have been developed, and they can be used to identify key features from the input data, which lead to a certain prediction and, thus, an understanding of the model logic.
4.2. Remaining Challenges
4.2.1. Bias and Fairness
4.2.2. Robustness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Cardin, O. Classification of cyber-physical production systems applications: Proposition of an analysis framework. Comput. Ind. 2019, 104, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, Y.; Wang, T.; Sheratt, R.S.; Zhang, J. Big data service architecture: A survey. J. Internet Technol. 2020, 21, 393–405. [Google Scholar]
- Chen, Z.; Ye, R. Principles of Creative Problem Solving in AI Systems. Sci. Educ. 2022, 31, 555–557. [Google Scholar] [CrossRef]
- Fahle, S.; Prinz, C.; Kuhlenkotter, B. Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field application. Procedia CIRP 2020, 93, 413–418. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv. 2022, 54, 1–35. [Google Scholar] [CrossRef]
- Varghese, J.; Kleine, M.; Gessner, S.I.; Sandmann, S.; Dugas, M. Effects of computerized decision support system implementations on patient outcomes in inpatient care: A systematic review. J. Am. Med. Inform. Assn. 2018, 25, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm. Comput. Sci. Rev. 2021, 40, 100341. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Zhang, Z.; Rai, R. The interpretive model of manufacturing: A theoretical framework and research agenda for machine learning in manufacturing. Int. J. Prod. Res. 2021, 59, 4960–4994. [Google Scholar] [CrossRef]
- Rai, R.; Tiwari, M.K.; Ivanov, D.; Dolgui, A. Machine learning in manufacturing and industry 4.0 applications. Int. J. Prod. Res. 2021, 59, 4773–4778. [Google Scholar] [CrossRef]
- Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine Learning for industrial applications: A comprehensive literature review. Expert Syst. Appl. 2021, 175, 114820. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.T. A review on industrial applications of machine learning. Int. J. Disast. Recov. Bus. Cont. 2018, 9, 1–9. [Google Scholar]
- Peres, R.S.; Jia, X.; Lee, J.; Sun, K.; Colombo, A.W.; Barata, J. Industrial Artificial Intelligence in Industry 4.0–Systematic Review, Challenges and Outlook. IEEE Access 2020, 8, 220121–220139. [Google Scholar] [CrossRef]
- Challen, R.; Denny, J.; Pitt, M.; Gompels, L.; Edwards, T.; Tsaneva-Atanasova, K. Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 2019, 28, 231–237. [Google Scholar] [CrossRef]
- Rai, A. Explainable AI: From black box to glass box. Acad. Mark. Sci. Rev. 2020, 48, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Messalas, A.; Kanellopoulos, Y.; Makris, C. Model-Agnostic Interpretability with Shapley Values. In Proceedings of the 10th International Conference on Information, Intelligence, Systems and Applications (IISA 2019), Patras, Greece, 15–17 July 2019; pp. 1–7. [Google Scholar]
- Palatnik de Sousa, I.; Maria Bernardes Rebuzzi Vellasco, M.; Costa da Silva, E. Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases. Sensors 2019, 19, 2969. [Google Scholar] [CrossRef] [Green Version]
- Antwarg, L.; Miller, R.M.; Shapira, B.; Rokach, L. Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Syst. Appl. 2021, 186, 115736. [Google Scholar] [CrossRef]
- Liang, Y.; Li, S.; Yan, C.; Li, M.; Jiang, C. Explaining the black-box model: A survey of local interpretation methods for deep neural networks. Neurocomputing 2019, 419, 168–182. [Google Scholar] [CrossRef]
- Orlandi, C.; Piva, A.; Barni, M. Oblivious Neural Network Computing via Homomorphic Encryption. Eurasip J. Inf. 2007, 2007, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vizitiu, A.; Nita, C.I.; Toev, R.M.; Suditu, T.; Suciu, C.; Itu, L.M. Framework for Privacy-Preserving Wearable Health Data Analysis: Proof-of-Concept Study for Atrial Fibrillation Detection. Appl. Sci. 2021, 11, 9049. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, P.; Liu, J.K.; Yu, J.; Xie, W. Private Machine Learning Classification Based on Fully Homomorphic Encryption. IEEE Trans. Emerg. Top. Comput. 2020, 8, 352–364. [Google Scholar] [CrossRef]
- Aslett, L.J.; Esperança, P.M.; Holmes, C.C. A review of homomorphic encryption and software tools for encrypted statistical machine learning. arXiv 2015, arXiv:1508.06574. [Google Scholar]
- Takabi, H.; Hesamifard, E.; Ghasemi, M. Privacy preserving multi-party machine learning with homomorphic encryption. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Li, J.; Kuang, X.; Lin, S.; Ma, X.; Tang, Y. Privacy preservation for machine learning training and classification based on homomorphic encryption schemes. Inf. Sci. 2020, 526, 166–179. [Google Scholar] [CrossRef]
- Wood, A.; Najarian, K.; Kahrobaei, D. Homomorphic Encryption for Machine Learning in Medicine and Bioinformatics. ACM Comput. Surv. 2021, 53, 1–35. [Google Scholar] [CrossRef]
- Fang, H.; Qian, Q. Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning. Future Internet 2021, 13, 94. [Google Scholar] [CrossRef]
- Khan, L.U.; Saad, W.; Han, Z.; Hossain, E.; Hong, C.S. Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 1759–1799. [Google Scholar] [CrossRef]
- Oh, S.J.; Schiele, B.; Fritz, M. Towards Reverse-Engineering Black-Box Neural Networks. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 1st ed.; Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.R., Eds.; Springer: Cham, Switzerland, 2019; Volume 11700, pp. 121–144. ISBN 978-3-030-28954-6. [Google Scholar]
- Google Cloud. Accelerate Your Transformation with Google Could. 2022. Available online: https://cloud.google.com/ (accessed on 10 March 2022).
- Azure Machine Learning. An Enterprise-Grade Service for the End-to-End Machine Learning Lifecycle. 2022. Available online: https://azure.microsoft.com/en-us/services/machine-learning/ (accessed on 10 March 2020).
- Fu, A.; Zhang, X.; Xiong, N.; Gao, Y.; Wang, H.; Zhang, J. VFL: A Verifiable Federated Learning with Privacy-Preserving for Big Data in Industrial IoT. IEEE Trans. Industr. Inform. 2020, 18, 3316–3326. [Google Scholar] [CrossRef]
- Girka, A.; Terziyan, V.; Gavriushenko, M.; Gontarenko, A. Anonymization as homeomorphic data space transformation for privacy-preserving deep learning. Procedia Comput. Sci. 2021, 180, 867–876. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D.; Li, Z.; Lyu, L.; Liu, Y. Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices. IEEE Internet Things J. 2021, 8, 1817–1829. [Google Scholar] [CrossRef]
- Gonçalves, C.; Bessa, R.J.; Pinson, P. Privacy-Preserving Distributed Learning for Renewable Energy Forecasting. IEEE Trans. Sustain. Energy 2021, 12, 1777–1787. [Google Scholar] [CrossRef]
- Goodfellow, I.; Jean, P.A.; Mehdi, M.; Bing, X.; David, W.F.; Sherjil, O.; Aaron, C.; Bengio, Y. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Li, Y.; Li, J.; Wang, Y. Privacy-Preserving Spatiotemporal Scenario Generation of Renewable Energies: A Federated Deep Generative Learning Approach. IEEE Trans. Industr. Inform. 2021, 18, 2310–2320. [Google Scholar] [CrossRef]
- Kaggle. Casting Product Image Data for Quality Inspection–Dataset. Available online: https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product (accessed on 20 May 2022).
- Popescu, A.B.; Taca, I.A.; Vizitiu, A.; Nita, C.I.; Suciu, C.; Itu, L.M.; Scafa-Udriste, A. Obfuscation Algorithm for Privacy-Preserving Deep Learning-Based Medical Image Analysis. Appl. Sci. 2022, 12, 3997. [Google Scholar] [CrossRef]
- Castelvecchi, D. Can we open the black box of AI? Nat. News 2016, 538, 20. [Google Scholar] [CrossRef] [Green Version]
- Holm, E.A. In defense of the black box. Science 2019, 364, 26–27. [Google Scholar] [CrossRef]
- Fedotova, A.; Romanov, A.; Kurtukova, A.; Shelupanov, A. Authorship Attribution of Social Media and Literary Russian-Language Texts Using Machine Learning Methods and Feature Selection. Future Internet 2021, 14, 4. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent individualized feature attribution for tree ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar]
- Kaya, M.; Bilge, H.Ș. Deep metric learning: A survey. Symmetry 2019, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Sahakyan, M.; Aung, Z.; Rahwan, T. Explainable Artificial Intelligence for Tabular Data: A Survey. IEEE Access 2021, 9, 135392–135422. [Google Scholar] [CrossRef]
- Poulin, B.; Eisner, R.; Szafron, D.; Lu, P.; Greiner, R.; Wishart, D.S.; Fushe, A.; Pearcy, B.; MacDonell, C.; Anvik, J. Visual explanation of evidence with additive classifiers. In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2006), Boston, MA, USA, 16–20 July 2006; pp. 1822–1829. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. ‘Why should i trust you? ’: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Oviedo, F.; Ren, Z.; Sun, S.; Settens, C.; Liu, Z.; Hartono, N.T.P.; Ramasamy, S.; DeCost, B.L.; Tian, S.I.; Romano, G.; et al. Fast and interpretable classification of small x-ray diffraction datasets using data augmentation and deep neural networks. NPJ Comput. Mater. 2019, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Thrun, M.C.; Ultsch, A.; Breuer, L. Explainable AI Framework for Multivariate Hydrochemical Time Series. Mach. Learn. Knowl. Extr. 2021, 3, 170–204. [Google Scholar] [CrossRef]
- Kohlbrenner, M.; Bauer, A.; Nakajima, S.; Binder, A.; Samek, W.; Pushkin, S. Towards Best Practice in Explaining Neural Network Decisions with LRP. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2020), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Yang, G.; Ye, Q.; Xia, J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Inf. Fusion 2022, 77, 29–52. [Google Scholar] [CrossRef]
- Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J. Explainable AI: A Brief Survey on History, Research Areas, Approaches and Challenges. In Proceedings of the Natural Language Processing and Chinese Computing (NLPCC 2019), Dunhuang, China, 9–14 October 2019; pp. 564–574. [Google Scholar]
- Degas, A.; Islam, M.R.; Hurter, C.; Barua, S.; Rahman, H.; Poudel, M.; Ruscio, D.; Ahmed, M.U.; Begum, S.; Rahman, M.A.; et al. A Survey on Artificial Intelligence (AI) and Explainable AI in Air Traffic Management: Current Trends and Development with Future Research Trajectory. Appl. Sci. 2022, 12, 1295. [Google Scholar] [CrossRef]
- Gade, K.; Geyik, C.; Kenthapadi, K.; Mithal, V.; Taly, A. Explainable AI in Industry. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2019), Ankorage, AK, USA, 4–8 August 2019; pp. 3203–3204. [Google Scholar]
- Longo, L.; Goebel, R.; Lecue, F.; Kieseberg, P.; Holzinger, A. Explainable Artificial Intelligence: Concepts, Applications, Research Challenges and Visions. In Proceedings of the International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE 2020), Dublin, Ireland, 25–28 August 2020; pp. 1–16. [Google Scholar]
- Ahmed, I.; Jeon, G.; Piccialli, F. From Artificial Intelligence to eXplainable Artificial Intelligence in Industry 4.0: A survey on What, How, and Where. IEEE Trans. Industr. Inform. 2022, 18, 5031–5042. [Google Scholar] [CrossRef]
- Atakishiyev, S.; Salameh, M.; Yao, H.; Goebel, R. Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions. arXiv 2021, arXiv:2112.11561. [Google Scholar]
- Glomsrud, J.A.; Ødegårdstuen, A.; Clair, A.L.S.; Smogeli, Ø. Trustworthy versus Explainable AI in Autonomous Vessels. In Proceedings of the International Seminar on Safety and Security of Autonomous Vessels (ISSAV 2019), Helsinki, Finland, 17–18 September 2019; pp. 37–47. [Google Scholar]
- Krishnamurthy, V.; Nezafati, K.; Stayton, E.; Singh, V. Explainable AI Framework for Imaging-Based Predictive Maintenance for Automotive Applications and Beyond. Data-Enabled Discov. Appl. 2020, 4, 7. [Google Scholar] [CrossRef]
- Brito, L.C.; Susto, G.A.; Brito, J.N.; Duarte, M.A.V. An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery. Mech. Syst. Signal Pr. 2022, 163, 108105. [Google Scholar] [CrossRef]
- Chelgani, S.C.; Nasiri, H.; Tohry, A. Modeling of particle sizes for industrial HPGR products by a unique explainable AI tool- A “Conscious Lab” development. Adv. Powder Technol. 2021, 32, 4141–4148. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Appl. Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- Asad, M.; Moustafa, A.; Ito, T. FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning. Appl. Sci. 2020, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Ntoutsi, E.; Fafalios, P.; Gadiraju, U.; Iosifidis, U.; Nejdl, W.; Vidal, M.E.; Ruggieri, S.; Turini, F.; Papadopoulos, S.; Krasanakis, E.; et al. Bias in data-driven artificial intelligence systems–An introductory survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, 1356. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning From Noisy Labels With Deep Neural Networks: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–19. [Google Scholar] [CrossRef]
- Madaio, M.; Egede, L.; Subramonyam, H.; Vaughan, J.W.; Wallach, H. Assessing the Fairness of AI Systems: AI Practitioners Processes, Challenges, and Needs for Support. Proc. ACM Hum.-Comput. Interact. 2022, 6, 1–26. [Google Scholar] [CrossRef]
- Kobyzev, I.; Prince, S.J.; Brubaker, M.A. Normalizing Flows: An Introduction and Review of Current Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3964–3979. [Google Scholar] [CrossRef]
- Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using Real NVP. arXiv 2016, arXiv:1605.08803. [Google Scholar]
- Kingma, D.P.; Dhariwal, P. Glow: Generative Flow with Invertible 1×1 Convolutions. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2018), Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Liu, W.; Wang, X.; Owens, J.; Li, Y. Energy-based Out-of-distribution Detection. Adv. Neural. Inf. Process. Syst. 2020, 33, 21464–21475. [Google Scholar]
- Ober, S.W.; Rasmussen, C.E.; van der Milk, M. The Promises and Pitfalls of Deep Kernel Learning. In Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021), Toronto, ON, Canada, 26–30 July 2021. [Google Scholar]
- Kwon, H.; Kim, Y. BlindNet backdoor: Attack on deep neural network using blind watermark. Multimed. Tools Appl. 2022, 81, 6217–6234. [Google Scholar] [CrossRef]
- Kwon, H.; Lee, S. Textual Adversarial Training of Machine Learning Model for Resistance to Adversarial Examples. Secur. Commun. Netw. 2022, 2022, 4511510. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogrezeanu, I.; Vizitiu, A.; Ciușdel, C.; Puiu, A.; Coman, S.; Boldișor, C.; Itu, A.; Demeter, R.; Moldoveanu, F.; Suciu, C.; et al. Privacy-Preserving and Explainable AI in Industrial Applications. Appl. Sci. 2022, 12, 6395. https://doi.org/10.3390/app12136395
Ogrezeanu I, Vizitiu A, Ciușdel C, Puiu A, Coman S, Boldișor C, Itu A, Demeter R, Moldoveanu F, Suciu C, et al. Privacy-Preserving and Explainable AI in Industrial Applications. Applied Sciences. 2022; 12(13):6395. https://doi.org/10.3390/app12136395
Chicago/Turabian StyleOgrezeanu, Iulian, Anamaria Vizitiu, Costin Ciușdel, Andrei Puiu, Simona Coman, Cristian Boldișor, Alina Itu, Robert Demeter, Florin Moldoveanu, Constantin Suciu, and et al. 2022. "Privacy-Preserving and Explainable AI in Industrial Applications" Applied Sciences 12, no. 13: 6395. https://doi.org/10.3390/app12136395
APA StyleOgrezeanu, I., Vizitiu, A., Ciușdel, C., Puiu, A., Coman, S., Boldișor, C., Itu, A., Demeter, R., Moldoveanu, F., Suciu, C., & Itu, L. (2022). Privacy-Preserving and Explainable AI in Industrial Applications. Applied Sciences, 12(13), 6395. https://doi.org/10.3390/app12136395