High-Efficiency Conversion of Bread Residues to Ethanol and Edible Biomass Using Filamentous Fungi at High Solids Loading: A Biorefinery Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Microorganisms and Enzyme
2.3. Cultivation Medium Preparation
2.4. Fungal Cultivations
2.4.1. Fungal Strain Selection
2.4.2. Two-Stage Fermentation
2.4.3. Analytical Methods
- Y—product (ethanol or biomass) yield (gproduct/gsubstrate);
- P—product concentration in the medium (g/L);
- S—substrate concentration in the medium (g/L).
3. Results
3.1. Fermentation Medium Characteristics
3.2. Fungal Strain Selection for Efficient Ethanol and Biomass Production
3.3. Two-Stage Fermentation of Bread Hydrolysate
3.4. Process Mass Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, A.V.; Singh, A.; Mohanty, S.S.; Srivastava, V.K.; Varjani, S. Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresour. Technol. 2022, 349, 126835. [Google Scholar] [CrossRef]
- Joseph, G.; Wang, L. Production of biofuels from biomass by fungi. In Fungal Biorefineries; Kumar, S., Dheeran, P., Taherzadeh, M., Khanal, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 21–46. [Google Scholar] [CrossRef]
- Sar, T.; Larsson, K.; Rikard, F.; Undeland, I.; Taherzadeh, M.J. Demo-scale production of protein-rich fungal biomass from potato protein liquor for use as innovative food and feed products. Food Biosci. 2022, 47, 101637. [Google Scholar] [CrossRef]
- Wijayarathna, E.R.K.B.; Mohammadkhani, G.; Soufiani, A.M.; Adolfsson, K.H.; Ferreira, J.A.; Hakkarainen, M.; Berglund, L.; Heinmaa, I.; Root, A.; Zamani, A. Fungal textile alternatives from bread waste with leather-like properties. Resour. Conserv. Recycl. 2022, 179, 106041. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Mahboubi, A.; Lennartsson, P.R.; Taherzadeh, M.J. Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresour. Technol. 2016, 215, 334–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozdnyakova, N.; Bubrovskaya, E.; Schlosser, D.; Kuznetsova, S.; Sigida, E.; Grinev, V.; Golubev, S.; Kryuchakova, E.; Varese, G.C.; Turkovskaya, O. Widespread ability of lignolytic fungi to degrade hazardous organic pollutants as the basis for the self-purification ability of natural ecosystems and form mycoremediation technologies. Appl. Sci. 2022, 12, 2164. [Google Scholar] [CrossRef]
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on future protein production. J. Agric. Food. Chem. 2021, 69, 15076–15083. [Google Scholar] [CrossRef] [PubMed]
- United Nation Environment Programme. Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Melikoglu, M.; Webb, C. Use of waste bread to produce fermentation products. In Food Industry Wates Assessment and Recuperation of Commodities; Kosseva, M.R., Webb, C., Eds.; Academic Press: London, UK, 2013; pp. 63–74. [Google Scholar]
- Brancoli, P.; Bolton, K.; Eriksson, M. Environmental impacts of waste management and valorization pathways for surplus bread in Sweden. Waste Manag. 2020, 117, 136–145. [Google Scholar] [CrossRef]
- Dziki, D.; Polak, R.; Wójcik, J.; Kozak, P.; Gawłowski, S.; Krzysiak, Z. The analysis of drying and grinding processes of bread withdrawn from the market in terms of possible use in the Energy to the industrial purposes. Pol. J. Food Eng. 2015, 13, 19–23. [Google Scholar]
- Kawa-Rygielska, J.; Pietrzak, W.; Czubaszek, A. Characterization of fermentation of waste wheat-rye bread mashes with the addition of complex enzymatic preparations. Biomass Bioenergy 2012, 44, 17–22. [Google Scholar] [CrossRef]
- Pietrzak, W.; Kawa-Rygielska, J. Simultaneous saccharification and ethanol fermentation of waste wheat-rye bread at very high solids loading: Effect of enzymatic liquefaction conditions. Fuel 2015, 147, 236–242. [Google Scholar] [CrossRef]
- Djukić-Vuković, A.; Mladenović, D.; Radosavljević, M.; Kocić-Tanackov, S.; Pejin, J.; Mojović, L. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production—A comparative study. Waste Manag. 2016, 48, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.C.J.; Cheung, A.S.Y.; Zhang, A.Y.Z.; Lam, K.F.; Lin, C.S.K. Utilisation of waste bread for fermentative succinic acid production. Biochem. Eng. J. 2012, 65, 10–15. [Google Scholar] [CrossRef]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Solid state fermentation of waste bread pieces by Aspergillus awamori: Analysing the effects of airflow rate on enzyme production in packed bed bioreactors. Food Bioprod. Process. 2015, 95, 63–75. [Google Scholar] [CrossRef]
- Han, W.; Hu, Y.Y.; Li, S.Y.; Li, F.F.; Tang, J.H. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis. Bioresour. Technol. 2016, 221, 318–323. [Google Scholar] [CrossRef] [Green Version]
- ISO 10520:1997; Native Starch: Determination of Starch Content, Ewers Polarymetric Method. International Organization for Standardization: Geneva, Switzerland, 1997.
- Pietrzak, W.; Kawa-Rygielska, J. Effect of sieving and alkaline extraction of whole rye meal on the production of ethanol and valuable by-products in an integrated bioprocess. J. Cereal Sci. 2021, 102, 103342. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K.; Taherzadeh, M.J.; Zamani, A. Co-production of fungal biomass derived constituents and ethanol from citrus waste free sugars without auxiliary nutrients in airlift bioreactor. Int. J. Mol. Sci. 2016, 17, 302. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak, W.; Kawa-Rygielska, J. Ethanol fermentation of waste bread using granular starch hydrolyzing enzyme: Effect of raw material pretreatment. Fuel 2014, 134, 250–256. [Google Scholar] [CrossRef]
- Narisetty, V.; Nagarajan, S.; Gadkari, S.; Ranade, V.V.; Zhang, J.; Patchigolla, K.; Bhatanagar, A.; Awasthi, M.K.; Pandey, A.; Kumar, V. Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach. Energy Convers. Manag. 2022, 266, 115784. [Google Scholar] [CrossRef]
- Torabi, S.; Satari, B.; Hassan-Beygi, S.R. Process optimization for dilute acid and enzymatic hydrolysis of waste wheat bread and its effect on aflatoxin fate and ethanol production. Biomass Convers. Biorefinery 2021, 11, 2617–2625. [Google Scholar] [CrossRef]
- Kwiatkowski, J.R.; McAloon, A.J.; Taylor, F.; Johnston, D.B. Modelling the process and costs of fuel ethanol production by the corn dry-grind process. Ind. Crops Prod. 2006, 23, 288–296. [Google Scholar] [CrossRef]
- Mehta, D.; Satyanarayana, T. Bacterial and archaeal α-amylase: Diversity and Amelioration of the desirable characteristics for industrial applications. Front. Microbiol. 2016, 7, 1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, J.A.; Lennartsson, P.R.; Taherzadeh, M.J. Production of ethanol and biomass from thin stillage using food-grade Zygomycetes and Ascomycetes filamentous fungi. Energies 2014, 7, 3872–3885. [Google Scholar] [CrossRef] [Green Version]
- Parchami, M.; Ferreira, J.A.; Taherzadeh, M.J. Starch and protein recovery from brewer’s spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi- a brewery biorefinery concept. Bioresour. Technol. 2021, 337, 125409. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.B.; Kalif, M.; Ferreira, J.A.; Taherzadeh, M.J.; Lennartsson, P.R. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes. Bioresour. Technol. 2017, 245, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Svensson, S.E.; Bucuricova, L.; Ferreira, J.A.; Souza Filho, P.F.; Taherzadeh, M.J.; Zamani, A. Valorization of Bread Waste to a Fiber and Protein-Rich Fungal Biomass. Fermentation 2021, 7, 91. [Google Scholar] [CrossRef]
- Gmoser, R.; Fristedt, R.; Larsson, K.; Undeland, I.; Taherzadeh, M.J.; Lennartsson, P.R. From stale bread and brewers spent grains to a new food source using edible filamentous fungi. Bioengineered 2020, 11, 582–598. [Google Scholar] [CrossRef]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food Bioprod. Process. 2013, 91, 638–646. [Google Scholar] [CrossRef]
- Villegas-Torres, M.F.; Ward, J.M.; Lye, G.J. The protein fraction from wheat-based dried distiller’s grain with solubles (DDGS): Extraction and valorization. New Biotechnol. 2015, 32, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Souza-Filho, P.F.; Nair, R.B.; Andersson, D.; Lennartsson, P.R.; Taherzadeh, M.J. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biol. Biotechnol. 2018, 5, 5. [Google Scholar] [CrossRef]
Component | Concentration (g/L) |
---|---|
Dextrin (DP4+) | 95.36 ± 6.28 |
Maltotriose | 14.57 ± 0.83 |
Maltose | 14.63 ± 0.43 |
Glucose | 5.52 ± 0.03 |
Total dissolved carbohydrates | 130.08 ± 7.52 |
Lactic acid | 0.19 ± 0.06 |
Glycerol | 0.12 ± 0.07 |
Dissolved solids | 140.13 ± 1.13 |
Undissolved solids | 17.68 ± 0.66 |
Concentration (g/L) | N. intermedia | A. oryzae | R. oryzae | M. indicus |
---|---|---|---|---|
Dextrin | 13.88 ± 1.92 | 10.12 ± 0.84 | 42.65 ± 0.13 | 17.54 ± 0.22 |
Maltoriose | 5.12 ± 0.11 | 2.66 ± 0.17 | 4.40 ± 0.58 | 6.00 ± 0.10 |
Maltose | 2.76 ± 0.64 | 3.48 ± 0.09 | 33.58 ± 0.17 | n.d. |
Glucose | 28.67 ± 2.38 | 24.22 ± 1.85 | 1.48 ± 0.08 | 17.13 ± 2.27 |
Lactic acid | n.d. | n.d. | 1.93 ± 0.16 | n.d. |
Glycerol | 1.58 ± 0.01 | 1.22 ± 0.03 | 1.68 ± 0.05 | 2.69 ± 0.01 |
Ethanol | 32.90 ± 0.74 | 18.55 ± 0.26 | 21.27 ± 0.65 | 29.42 ± 0.42 |
Biomass | 18.86 ± 0.01 | 25.21 ± 0.41 | 19.50 ± 0.38 | 20.12 ± 0.27 |
Protein in biomass (g/g) | 0.46 ± 0.02 | 0.47 ± 0.03 | 0.45 ± 0.01 | 0.45 ± 0.02 |
Ethanol yield (g/g) 1 | 0.22 ± 0.00 | 0.12 ± 0.00 | 0.14 ± 0.00 | 0.20 ± 0.01 |
Biomass yield (g/g) 1 | 0.12 ± 0.00 | 0.17 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.01 |
Component | Concentration (g/L) |
---|---|
Dextrin (DP4+) | 19.60 ± 0.05 |
Maltotriose | 4.80 ± 0.00 |
Maltose | 4.93 ± 0.01 |
Glucose | 27.78 ± 0.06 |
Total dissolved carbohydrates | 57.11 ± 0.10 |
Lactic acid | n.d |
Glycerol | 1.41 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawa-Rygielska, J.; Pietrzak, W.; Lennartsson, P.R. High-Efficiency Conversion of Bread Residues to Ethanol and Edible Biomass Using Filamentous Fungi at High Solids Loading: A Biorefinery Approach. Appl. Sci. 2022, 12, 6405. https://doi.org/10.3390/app12136405
Kawa-Rygielska J, Pietrzak W, Lennartsson PR. High-Efficiency Conversion of Bread Residues to Ethanol and Edible Biomass Using Filamentous Fungi at High Solids Loading: A Biorefinery Approach. Applied Sciences. 2022; 12(13):6405. https://doi.org/10.3390/app12136405
Chicago/Turabian StyleKawa-Rygielska, Joanna, Witold Pietrzak, and Patrik R. Lennartsson. 2022. "High-Efficiency Conversion of Bread Residues to Ethanol and Edible Biomass Using Filamentous Fungi at High Solids Loading: A Biorefinery Approach" Applied Sciences 12, no. 13: 6405. https://doi.org/10.3390/app12136405
APA StyleKawa-Rygielska, J., Pietrzak, W., & Lennartsson, P. R. (2022). High-Efficiency Conversion of Bread Residues to Ethanol and Edible Biomass Using Filamentous Fungi at High Solids Loading: A Biorefinery Approach. Applied Sciences, 12(13), 6405. https://doi.org/10.3390/app12136405