Compressive Domain Deep CNN for Image Classification and Performance Improvement Using Genetic Algorithm-Based Sensing Mask Learning
Abstract
:1. Introduction
2. Related Work
2.1. Compressed Domain Image Classification
2.2. Proposed Sensing Matrix Learning
- (i)
- Our sensing matrix is not based on single pixel camera principle but a simple pixel-retaining process using a binary mask.
- (ii)
- We use an evolution algorithm for binary mask learning named Genetic Algorithm-based compressed domain learning (GACL). We evaluate our research outcomes purely by comparison of our own results with and without GACL.
- (iii)
- We do not have an image reconstruction step both in testing and training phase.
- (iv)
- We consider dataset with more natural images, for example cat and dog images.
2.3. Heuristic Algorithms for Proposed Work
3. Proposed Methodology
3.1. Study of Binary Masking Based Compressed Domain Learning
3.2. Genetic Algorithm-Based Compressed Domain Learning
3.3. GACL for Multiclass Datasets
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CS | Compressive Sensing |
CNN | Convolution Neural Network |
SPC | Single Pixel Camera |
PWH | Primitive Walsh Hadamard |
GA | Genetic Algorithm |
GACL | Genetic Algorithm based compressive learning |
GACCNN | Genetic Algorithm Based Compressive Convolution Neural Network |
DRNN | Dynamic rate neural network |
SPC | single-pixel camera |
SVM | Support vector machine |
DCT | Discrete Cosine Transforms |
GAN | Generative adversarial network |
RNN | Recurrent neural networks |
MR | Measuring Rate |
References
- Candès, E.J. Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; Volume 3, pp. 1433–1452. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007, 23, 969. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Gao, Z.; Dai, L.; Han, S.; Chih-Lin, I.; Wang, Z.; Hanzo, L. Compressive sensing techniques for next-generation wireless communications. IEEE Wirel. Commun. 2018, 25, 144–153. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef]
- Calderbank, R.; Jafarpour, S.; Schapire, R. Compressed Learning: Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain. 2009. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.7564 (accessed on 12 June 2022).
- Kriegeskorte, N. Deep neural networks: A new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 2015, 1, 417–446. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Shea, K.O.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 818–833. [Google Scholar]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Fully convolutional neural networks for remote sensing image classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5071–5074. [Google Scholar]
- Lokanath, M.; Kumar, K.S.; Keerthi, E.S. Accurate object classification and detection by faster-RCNN. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 052028. [Google Scholar] [CrossRef]
- Hossain, M.B.; Posada-Quintero, H.F.; Kong, Y.; McNaboe, R.; Chon, K.H. Automatic motion artifact detection in electrodermal activity data using machine learning. Biomed. Signal Process. Control 2022, 74, 103483. [Google Scholar] [CrossRef]
- Kapgate, D. Efficient Quadcopter Flight Control Using Hybrid SSVEP+ P300 Visual Brain Computer Interface. Int. J. Hum.–Comput. Interact. 2022, 38, 42–52. [Google Scholar] [CrossRef]
- Roy, A.M. An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces. Biomed. Signal Process. Control 2022, 74, 103496. [Google Scholar] [CrossRef]
- Lohit, S.; Kulkarni, K.; Turaga, P.; Wang, J.; Sankaranarayanan, A.C. Reconstruction-free inference on compressive measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 16–24. [Google Scholar]
- Lohit, S.; Kulkarni, K.; Turaga, P. Direct inference on compressive measurements using convolutional neural networks. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1913–1917. [Google Scholar]
- Adler, A.; Elad, M.; Zibulevsky, M. compressed learning: A deep neural network approach. arXiv 2016, arXiv:1610.09615. [Google Scholar]
- Kulkarni, K.; Turaga, P. Reconstruction-free action inference from compressive imagers. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 772–784. [Google Scholar] [CrossRef]
- Davenport, M.A.; Duarte, M.F.; Wakin, M.B.; Laska, J.N.; Takhar, D.; Kelly, K.F.; Baraniuk, R.G. The smashed filter for compressive classification and target recognition. Comput. Imaging Int. Soc. Opt. Photonics 2007, 6498, 64980H. [Google Scholar]
- Li, Y.; Hegde, C.; Sankaranarayanan, A.C.; Baraniuk, R.; Kelly, K.F. Compressive image acquisition and classification via secant projections. J. Opt. 2015, 17, 065701. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Fu, D.; Guimaraes, G. Using Compression to Speed up Image Classification in Artificial Neural Networks. 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjs8c-tiub4AhUJl1YBHVOxD6gQFnoECAMQAQ&url=https%3A%2F%2Fwww.danfu.org%2Ffiles%2FCompressionImageClassification.pdf&usg=AOvVaw1foTAdAWzQUV6ELtSfdCeQ (accessed on 12 June 2022).
- Lohit, S.; Singh, R.; Kulkarni, K.; Turaga, P. Rate-adaptive neural networks for spatial multiplexers. arXiv 2018, arXiv:1809.02850. [Google Scholar]
- Ball, J.; Laparra, V.; Simoncelli, E.P. End-to-End Optimized, Image Compression. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017; pp. 1–27. [Google Scholar]
- Choi, Y.; El-Khamy, M.; Lee, J. Variable rate deep image compression with a conditional auto encoder. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 3146–3154. [Google Scholar]
- Johnston, N.; Vincent, D.; Minnen, D.; Covell, M.; Singh, S.; Chinen, T.; Hwang, S.J.; Shor, J.; Toderici, G. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4385–4393. [Google Scholar]
- Agustsson, E.; Tschannen, M.; Mentzer, F.; Timofte, R.; Gool, L.V. Generative adversarial networks for extreme learned image compression. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 221–231. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. Learning in the frequency domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1740–1749. [Google Scholar]
- Xu, Y.; Liu, W.; Kelly, K.F. Compressed Domain Image Classification Using a Dynamic-Rate Neural Network. IEEE Access 2020, 8, 217711–217722. [Google Scholar] [CrossRef]
- Torfason, R.; Mentzer, F.; Agustsson, E.; Tschannen, M.; Timofte, R.; Van Gool, L. Towards image understanding from deep compression without decoding. arXiv 2018, arXiv:1803.06131. [Google Scholar]
- Stanković, I.; Orović, I.; Stanković, S. Image reconstruction from a reduced set of pixels using a simplified gradient algorithm. In Proceedings of the 22nd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 25–27 November 2014; IEEE: Piscataway, NJ, USA; pp. 497–500. [Google Scholar]
- He, T.; Sun, S.; Guo, Z.; Chen, Z. Beyond coding: Detection-driven image compression with semantically structured bit-stream. In Proceedings of the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Gharib, M.R. Comparison of robust optimal QFT controller with TFC and MFC controller in a multi-input multi-output system. Rep. Mech. Eng. 2020, 1, 151–161. [Google Scholar] [CrossRef]
- Das, M.; Roy, A.; Maity, S.; Kar, S.; Sengupta, S. Solving fuzzy dynamic ship routing and scheduling problem through new genetic algorithm. Decis. Mak. Appl. Manag. Eng. 2021, 1–33. [Google Scholar] [CrossRef]
- Ganguly, S. Multi-objective distributed generation penetration planning with load model using particle swarm optimization. Decis. Mak. Appl. Manag. Eng. 2020, 3, 30–42. [Google Scholar] [CrossRef]
- Negi, G.; Kumar, A.; Pant, S.; Ram, M. Optimization of complex system reliability using hybrid grey wolf optimizer. Decis. Mak. Appl. Manag. Eng. 2021, 4, 241–256. [Google Scholar] [CrossRef]
- Ghosal, S.G.; Dey, S.; Chattopadhyay, P.P.; Datta, S.; Bhattacharyya, P. Designing optimized ternary catalytic alloy electrode for efficiency improvement of semiconductor gas sensors using a machine learning approach. Decis. Mak. Appl. Manag. Eng. 2021, 4, 126–139. [Google Scholar] [CrossRef]
- Sharma, R.; Kim, M.; Gupta, A. Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model. Biomed. Signal Process. Control 2022, 71, 103101. [Google Scholar] [CrossRef]
- Ragab, M.G.; Abdulkadir, S.J.; Aziz, N.; Al-Tashi, Q.; Alyousifi, Y.; Alhussian, H.; Alqushaibi, A. A novel one-dimensional cnn with exponential adaptive gradients for air pollution index prediction. Sustainability 2020, 12, 10090. [Google Scholar] [CrossRef]
- Available online: https://www.kaggle.com/datasets/tongpython/cat-and-dog (accessed on 15 February 2022).
Parameters | Values |
---|---|
Model Type | Sequential |
Activation Layer | Relu |
Shear Range | 0.2 |
Zoom Range | 0.2 |
Flip Type | Horizontal |
Filter Size | 64 × 64, 128 × 128 |
Kernel Size | 3 × 3 |
Optimizer | Adam |
Batch Size | 32 |
Epoch | 25–100 |
Class Mode | Binary |
Loss function | Binary Cross Entropy |
Metrics | Accuracies |
Percentage of Pixels Retained | Training Accuracy | Validation Accuracy | |
---|---|---|---|
Training Dataset | Testing Dataset | ||
100% | 100% | 97% | 76% |
100% | 50% | 97% | 62% |
100% | 25% | 97% | 59% |
100% | 15% | 97% | 52% |
100% | 10% | 96% | 49% |
50% | 50% | 95% | 73% |
25% | 25% | 87% | 67% |
15% | 15% | 84% | 65% |
10% | 10% | 77% | 61% |
Method | Percentage of Pixels Retained | Training Accuracy | Validation Accuracy | |
---|---|---|---|---|
Training Dataset | Testing Dataset | |||
Crossover | 10% | 10% | 80% | 60% |
Diagonal Crossover | 10% | 10% | 85% | 62% |
Method | Percentage of Pixels Retained | Training Accuracy | Validation Accuracy | |
---|---|---|---|---|
Training Dataset | Testing Dataset | |||
Without GA | 10% | 10% | 67% | 45% |
Method | Percentage of Pixels Retained | Training Accuracy | Validation Accuracy | |
---|---|---|---|---|
Training Dataset | Testing Dataset | |||
Crossover | 10% | 10% | 50% | 44% |
Diagonal Crossover | 10% | 10% | 67% | 52% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali B H, B.F.; Ramachandran, P. Compressive Domain Deep CNN for Image Classification and Performance Improvement Using Genetic Algorithm-Based Sensing Mask Learning. Appl. Sci. 2022, 12, 6881. https://doi.org/10.3390/app12146881
Ali B H BF, Ramachandran P. Compressive Domain Deep CNN for Image Classification and Performance Improvement Using Genetic Algorithm-Based Sensing Mask Learning. Applied Sciences. 2022; 12(14):6881. https://doi.org/10.3390/app12146881
Chicago/Turabian StyleAli B H, Baba Fakruddin, and Prakash Ramachandran. 2022. "Compressive Domain Deep CNN for Image Classification and Performance Improvement Using Genetic Algorithm-Based Sensing Mask Learning" Applied Sciences 12, no. 14: 6881. https://doi.org/10.3390/app12146881
APA StyleAli B H, B. F., & Ramachandran, P. (2022). Compressive Domain Deep CNN for Image Classification and Performance Improvement Using Genetic Algorithm-Based Sensing Mask Learning. Applied Sciences, 12(14), 6881. https://doi.org/10.3390/app12146881