Fishmeal Replacement with Animal Protein Source (Crocodylus niloticus Meat Meal) in Diets of Mozambique Tilapia (Oreochromis mossambicus) of Different Size Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Processing Crocodile Meat into Meal
2.2. Diets
2.3. Experimental Fish
2.4. Feeding Experiment
2.5. Growth and Feed Utilization Measurements and Calculations
2.6. Feed Costs Calculations
2.7. Statistical Analysis
3. Results
3.1. Weight Gain
3.2. Specific Growth Rate
3.3. Gross Feed Conversion Ratio
3.4. Protein Efficiency Ratio
3.5. Survival Rate
3.6. Weekly Mean Weights of Experimental Groups
3.7. Economic Analysis
4. Discussion
5. Conclusions
6. Limitations
7. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bills, R. Oreochromis mossambicus. (Errata Version Published in 2020). The IUCN Red List of Threatened Species 2019: e.T63338a174782954. Available online: https://www.iucnredlist.org (accessed on 9 July 2021).
- El-Sayed, A.F.M. Tilapia Culture; Alexandria University: Alexandria, Egypt, 2006; p. 277, ISBN-13 978-0-85199-014-9. [Google Scholar]
- Waiyamitra, P.; Piewbang, C.; Techangamsuwan, S.; Liew, W.C.; Surachetpong, W. Infection of Tilapia tilapinevirus in Mozambique Tilapia (Oreochromis mossambicus), a Globally Vulnerable Fish Species. Viruses 2021, 13, 1104. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, M.E.; Esterhuyse, M.M.; van der Waal, B.C.W.; Brink, D.; Volckaert, F.A.M. Hybridization and phylogeography of the Mozambique tilapia Oreochromis mossambicus in southern Africa evidenced by mitochondrial and microsatellite DNA genotyping. Conserv. Genet 2007, 8, 475–488. [Google Scholar] [CrossRef]
- Zengeya, T.A.; Booth, A.J.; Bastos, A.D.S.; Chimimba, C.T. Trophic interrelationships between the exotic Nile tilapia, Oreochromis niloticus and indigenous tilapiine cichlids in a subtropical African river system (Limpopo River, South Africa). Environ. Biol. Fishes 2011, 92, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Firmat, C.; Alibert, P.; Losseau, M.; Baroiller, J.F.; Schliewen, U.K. Successive invasion-mediated interspecific hybridizations and population structure in the endangered cichlid Oreochromis mossambicus. PLoS ONE 2013, 8, e63880. [Google Scholar] [CrossRef]
- Zengeya, T.A.; Robertson, M.P.; Booth, A.J.; Chimimba, C.T. Ecological niche modelling of the invasive potential of Nile tilapia Oreochromis niloticus in African river systems: Concerns and implications for the conservation of indigenous congeneric. Biol. Invasions 2013, 15, 1507–1521. [Google Scholar] [CrossRef]
- Zengeya, T.A.; Robertson, M.P.; Booth, A.T.; Chimimba, C.T.A. Qualitative ecological risk assessment of the invasive Nile tilapia, Oreochromis niloticus in a sub-tropical African river system (Limpopo River, South Africa). Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Deines, A.M.; Bbole, I.; Katongo, C.; Feder, J.L.; Lodge, D.M. Hybridisation between native Oreochromis species and introduced Nile tilapia O. niloticus in the Kafue River, Zambia. Afr. J. Aquat. Sci. 2014, 39, 23–34. [Google Scholar] [CrossRef]
- Balarin, J.D.; Haller, R.D. The Intensive Culture of Tilapia in Tanks, Raceways, and Cages. In Recent Advances in Aquaculture; Muir, J.F., Roberts, R.J., Eds.; Croom Helm: London, UK, 1982; pp. 265–355. [Google Scholar] [CrossRef]
- Rana, K. Reproductive Biology, and the Hatchery Rearing of Tilapia Eggs and Fry. In Recent Advances in Aquaculture; Muir, J.F., Roberts, R.J., Eds.; Croom Helm: London, UK, 1988; pp. 343–406. [Google Scholar] [CrossRef]
- Urban-Econ Development Economists. Nile and Mozambique Tilapia Feasibility Study Final Report 2018. p. 99. Pretoria, Urban-Econ. Available online: https://www.nda.agric.za/doaDev/sideMenu/fisheries/03_areasofwork/Aquaculture/economics/Final%20Nile%20and%20Mossambicus%20Tilapia%20Feasibility%20Study%202018_Formatted.pdf (accessed on 14 June 2021).
- Luthada-Raswiswi, R.; Mukaratirwa, S.; O’Brien, G. Animal Protein Sources as a Substitute for Fishmeal in Aquaculture Diets: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Alder, J.; Campbell, B.; Karpouzi, V.; Kaschner, K.; Pauly, D. Forage Fish: From Ecosystem to Markets. Annu. Rev. Environ. Resour. 2008, 33, 153–166. [Google Scholar] [CrossRef]
- Pikititch, E.K.; Rountos, K.J.; Essington, T.E.; Santora, C.; Pauly, D.; Watson, R.; Sumaila, U.R.; Boersma, P.D.; Boyd, I.L.; Conover, D.O.; et al. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 2014, 15, 43–64. [Google Scholar] [CrossRef]
- Kritsanapuntu, S.; Chaitanawisuti, N. Replacement of Fishmeal by Poultry By-Product Meal in Formulated Diets for Growing Hatchery–Reared Juvenile Spotted Babylon (Babylonia areolata). J. Aquac. Res. Dev. 2015, 6, 234. [Google Scholar] [CrossRef]
- Mdhluvu, R.M.; Mlambo, V.; Madibana, M.J.; Mwanza, M.; O’Brien, G. Crocodile meat meal as fishmeal substitute in juvenile dusky kob (Argyrosomus japonicus) diets: Feed utilization, growth performance, blood parameters, and tissue nutrient composition. Aquacult. Rep. 2021, 21, 100779. [Google Scholar] [CrossRef]
- Wing-Keong, N.G.; Romano, N. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Rev. Aquac. 2013, 5, 220–254. [Google Scholar] [CrossRef]
- Davis, D.A. Feed and Feeding Practices in Aquaculture; Woodhead Publishing: Cambridge, UK, 2015; p. 432. ISBN 978-0-08-100507-1. [Google Scholar]
- Luthada-Raswiswi, R.W.; Mukaratirwa, S.; O’Brien, G.C. Nutritional Value of the Nile crocodile (Crocodylus niloticus) Meal for Aquaculture Feeds in South Africa. J. FisheriesSciences.com. 2019, 13, 20–25. [Google Scholar] [CrossRef]
- Tacon, A.G.T.; Metian, M.; Hasan, M.R. Feed Ingredients and Fertilizers for Farmed Aquatic Animals: Sources and Composition; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2009; Available online: https://www.fao.org/3/i1142e/i1142e00.pdf (accessed on 13 July 2021).
- FAO (Food and Agricultural Organization of the UN). Food Outlook: Biannual Report on Global Food Markets; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Rana, K.J.; Siriwardena, S.; Hasan, M.R. Impact of Rising Feed Ingredient Prices on Aquafeeds and Aquaculture Production; FAO Fisheries and Aquaculture Technical Paper. No. 541; FAO: Rome, Italy, 2009; p. 63. ISBN 978-92-5-106422-1. [Google Scholar]
- Tacon, A.G.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Ashton, P.J. The demise of the Nile crocodile (Crocodylus niloticus) as a keystone species for aquatic ecosystem conservation in South Africa: The case of the Olifants River. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 489–493. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Fisher, P.P.; Sales, J. Carcass and meat characteristics of the Nile crocodile (Crocodylus niloticus). J. Sci. Food Agric. 2000, 80, 390–396. [Google Scholar] [CrossRef]
- Manolis, S.C.; Webb, G.J.W. Best Management Practices for Crocodilian Farming; IUCN-SSC Crocodile Specialist Group: Darwin, Australia, 2016; Version 1; p. 79. [Google Scholar]
- Luxmoore, R.A. Directory of Crocodilian Farming Operations; Wildlife Trade Monitoring Unit, lUCN Conservation Monitoring Centre: Cambridge, UK, 1992; p. 216. [Google Scholar]
- Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975. [Google Scholar]
- Paul, B.N.; Chand, S.; Das, S.; Singh, P.; Pandey, B.K.; Giri, S.S. Mineral assay in atomic absorption spectroscopy. Beats Nat. Sci. 2014, 4, 1–17. [Google Scholar]
- Gabriel, U.U.; Akinrotimi, O.A.; Bekibele, D.O.; Onunkwo, D.N.; Anyanwu, P.E. Locally produced fish feed: Potentials for aquaculture development in subsaharan Africa. Afr. J. Agric. Res. 2007, 2, 287–295. [Google Scholar] [CrossRef]
- Siraj, S.S.; Kamaruddin, Z.; Satar, M.K.A.; Kamarudin, M.S. Effects of feeding frequency on growth, food conversion and survival of red tilapia (Oreochromis mossambicus/O. niloticus) hybrid fry. In The Second International Symposium on Tilapia in Aquaculture; Pullin, R.S.V., Bhukaswan, T., Tonguthai, K., Maclean, J.L., Eds.; ICLARM: Conference Proceedings 15; Department of Fisheries: Bangkok, Thailand; ICLARM: Manila, Philippines, 1988; pp. 383–386. ISBN 971-1022-60-5. [Google Scholar]
- Luthada, R.W.; Jerling, H.L. Effect of feeding frequency and feeding rate on growth of Oreochromis mossambicus (Teleostei: Cichlidae) fry. Afr. J. Aquat. Sci. 2013, 38, 273–278. [Google Scholar] [CrossRef]
- Goddard, S. Feed rations and schedules. In Feed Management in Intensive Aquaculture; Goddard, S., Ed.; Chapman & Hall: New York, NY, USA, 1996; pp. 139–158. [Google Scholar] [CrossRef]
- Ajani, F.; Dawodedu, M.O.; Bello-Olusoji, O.A. Effects of feed forms and feeding frequency on growth performance and nutrient utilization of Clarias gariepinus fingerlings. Afr. J. Agric. Res. 2011, 6, 318–322. [Google Scholar] [CrossRef]
- Doupe, R.G.; Lumbery, A.J. Toward the Genetic Improvement of Feed Conversion Efficiency in Fish. J. World Aquac. Soc. 2003, 34, 245–254. [Google Scholar] [CrossRef]
- Rapatsa, M.M.; Moyo, N.A. Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis, and enzyme activity. Aquac. Rep. 2017, 5, 18–26. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 27.0; IBM Corp: Armonk, NY, USA, 2020. [Google Scholar]
- Jauncey, K. The effect of varying dietary protein level on the growth, food conversion ratio, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture 1982, 27, 43–54. [Google Scholar] [CrossRef]
- Bishop, C.D.; Angus, R.A.; Watts, S.A. The use of feather meal as a replacement of for fishmeal in the diet of Oreochromis niloticus fry. Bioresour. Technol. 1995, 54, 291–295. [Google Scholar] [CrossRef]
- Chor, W.-K.; Lim, L.-S.; Shapawi, R. Evaluation of feather meal as a dietary protein source for African Catfish fry, Clarias gariepinus. J. Fish. Aquat. Sci. 2013, 8, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zhang, Q.; Cao, H.; Tong, T.; Huang, G.; Li, W. Replacement of fish meal by meat and bone meal in diets for juvenile snakehead (Ophiocephalus argus). Fish. Sci. 2015, 81, 723–729. [Google Scholar] [CrossRef]
- Mmanda, F.P.; Lundh, T.; Halden, A.N.; Mtolera, M.S.P.; Kitula, R.; Lindberg, J.E. Replacing fish meal with locally available feed ingredients to reduce feed costs in cultured Nile tilapia (Oreochromis niloticus). Livest. Res. Rural. Dev. 2020, 32, 11. [Google Scholar]
- Halpern, B.S.; Maier, J.; Lahr, H.J.; Blasco, G.; Costello, C.; Cottrell, R.S.; Deschenes, O.; Ferraro, D.M.; Froehlich, H.E.; McDonald, G.G.; et al. The long and narrow path for novel cell-based seafood to reduce fishing pressure for marine ecosystem recovery. Fish Fish. 2021, 22, 652–664. [Google Scholar] [CrossRef]
- Millamena, O.M. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture 2002, 204, 75–84. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Total replacement of fishmeal with animal protein sources in Nile tilapia, Oreochromis niloticus (L.), feeds. Aquacult. Res. 1998, 29, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Conceicao, L.E.C. Growth in Early Life Stages of Fish: An Explanatory Model. Ph.D. Thesis, Department of Fish Culture and Fisheries, Wageningen Institute of Animal Sciences, Wageningen Agricultural University, Wageningen, The Netherlands, 1997. ISBN 90-5485-704-8. [Google Scholar]
- Siddiqui, A.Q.; Howlader, M.S.; Adam, A.A. Effect of dietary protein levels on growth, food conversion and protein utilization in fry and young Nile tilapia (Oreochromis niloticus). Aquaculture 1988, 70, 63–73. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Arunlertaree, C.; Moolthongnoi, C. The use of fermented feather meal for replacement fish meal in the diet of Oreochromis niloticus. Environ. Nat. Resour. J. 2008, 6, 13–24. [Google Scholar] [CrossRef]
- Abd Rahman Jabir, M.D.; Razak, S.A.; Vikineswary, S. Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. Isr. J. Aquac. 2012, 11, 6592–6598. [Google Scholar] [CrossRef] [Green Version]
- Alegbeleye, W.O.; Obasa, S.O.; Olude, O.O.; Otubu, K.; Jimoh, W. Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L.) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquac. Res. 2012, 43, 412–420. [Google Scholar] [CrossRef]
- Ayadi, F.Y.; Muthukumarappan, K.; Rosentrater, K.A. Alternative protein sources for Aquaculture feeds. J. Aquac. Feed Sci. Nutr. 2012, 4, 1–26. [Google Scholar] [CrossRef]
- Sing, K.-W.; Kamarudin, M.S.; Wilson, J.J.; Sofian-Azirun, M. Evaluation of Blowfly (Chrysomya megaphala) Maggot Meal as an Effective, Sustainable Replacement for Fishmeal in the Diets of Farmed Juvenile Red Tilapia (Oreochromis sp.). Pak. Vet. J. 2014, 34, 288–292. [Google Scholar]
- Taufek, N.M.; Muin, H.; Raji, A.A.; Yusof, H.M.; Alias, Z.; Razak, S.A. Potential of field crickets meal (Gryllus bimaculatus) in the diet of African catfish (Clarias gariepinus). J. Appl. Anim. Res. 2018, 46, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, Q.A.; Britz, P.J. Contribution of Aquaculture to Rural Livelihoods in South Africa: A Baseline Study; Report No. TT235/04. 2004. Water Research Commission: Grahamstown, South Africa, 2004; p. 110. Available online: https:www.wrc.org.za (accessed on 15 June 2021).
- Huss, S.S. Quality, and Quality Changes in Fresh Fish-Chemical Composition; FAO Fisheries Technical Paper 348. Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1995. Available online: https://www.fao.org/3/v7180e/V7180E00.HTM#Contents (accessed on 22 June 2021).
- Scheiber, S.; Focken, U.; Becker, K. Individual reared female Nile tilapia (Oreochromis niloticus) can grow faster than males. J. Appl. Ichthyol. 1998, 14, 43–47. [Google Scholar] [CrossRef]
- Barki, A.; Harpuz, S.; Hulata, G.; Karpus, I. Effects of larger fish and size grading on growth and size variation in fingerling silver perch. Aquac. Int. 2000, 8, 391–401. [Google Scholar] [CrossRef]
Nutrient (%) | Values for Raw Mixture Meal of Crocodylus niloticus |
Crude protein | 83.04 |
Moisture | 9.78 |
Crude fat | 4.48 |
Ash | 2.41 |
Crude fiber | 0.04 |
Selected Minerals (%) | |
Potassium | 32.90 |
Sodium | 11.17 |
Calcium | 1.93 |
Magnesium | 1.49 |
Zinc | 0.22 |
Iron | 0.21 |
Aluminum | 0.16 |
Copper | 0.04 |
Amino Acids (g/100 g dry matter) | |
Arginine | 7.55 |
Histidine | 4.88 |
Isoleucine | 4.10 |
Leucine | 8.06 |
Lysine | 7.27 |
Methionine | 4.53 |
Phenylalanine | 8.37 |
Threonine | 8.37 |
Valine | 4.32 |
Non-Essential Amino acids (g/100 g dry matter) | |
Alanine | 5.88 |
Asparagine | 8.61 |
Glutamic acid | 14.34 |
Glycine | 5.82 |
Proline | 3.06 |
Serine | 4.27 |
Tyrosine | 6.28 |
Fry Diets (D1–D3) | Fingerlings, Sub-Adult, and Adult Fish (D4–D6) | |||||
---|---|---|---|---|---|---|
Ingredients (g/kg) | D1 (0% CM) | D2 (50%/50% FM/CM) | D3 (100% CM) | D4 (0% CM) | D5 (50%/50%FM/CM) | D6 (100% CM) |
Fishmeal 1 | 25.000 | 12.500 | - | 15.000 | 7.500 | - |
Maize 2 | 20.000 | 20.139 | 20.279 | 30.000 | 30.000 | 30.000 |
Crocodile meal 3 | - | 9.032 | 18.063 | - | 8.406 | 16.812 |
Soybean meal 46 4 | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 |
Canola seed meal 5 | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 | 15.000 |
Maize gluten 60 6 | 10.000 | 10.000 | 10.000 | 8.324 | 6.436 | 4.548 |
Wheat bran 7 | 8.601 | 9.174 | 9.746 | 4.936 | 4.264 | 3.592 |
Canola oil 8 | 3.531 | 4.309 | 5.087 | 4.356 | 4.774 | 5.191 |
Monocalcium phosphate 9 | 1.719 | 2.940 | 4.161 | 1.031 | 4.565 | 8.099 |
Vitamin premix 10 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 |
Limestone 11 | - | - | - | 3.528 | 2.244 | 0.959 |
L-lysine HCL 12 | 0.349 | 1.107 | 1.864 | 2.024 | 1.012 | |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Proximate Composition (%) | ||||||
Moisture ** | 8.995 | 8.895 | 8.994 | 8.627 | 8.517 | 8.746 |
Crude protein * | 38 | 38 | 38 | 32 | 32 | 32 |
Crude fat ** | 8.842 | 8.090 | 6.408 | 8.344 | 8.935 | 5.446 |
Ash ** | 7.536 | 7.632 | 7.413 | 9.185 | 9.674 | 10.949 |
DE (MJ/kg) * | 13.426 | 11.707 | 9.988 | 12.840 | 11.320 | 9.800 |
Essential Amino Acids (g/100 g dry matter) | ||||||
Arginine *** | 2.82 | 2.87 | 3.05 | 2.36 | 3.31 | 2.83 |
Histidine *** | 2.03 | 1.94 | 1.90 | 1.63 | 2.27 | 1.61 |
Isoleucine *** | 1.53 | 1.56 | 1.63 | 1.30 | 1.45 | 1.45 |
Leucine *** | 3.36 | 3.54 | 3.79 | 3.00 | 3.13 | 2.99 |
Lysine *** | 2.04 | 3.24 | 4.13 | 3.02 | 1.52 | 2.11 |
Methionine *** | 1.26 | 1.22 | 1.32 | 0.97 | 1.29 | 1.12 |
Phenylalanine *** | 3.82 | 3.87 | 4.04 | 3.11 | 3.88 | 2.89 |
Threonine *** | 2.35 | 2.39 | 2.50 | 2.00 | 2.64 | 2.24 |
Valine *** | 1.93 | 1.93 | 1.94 | 1.67 | 1.82 | 1.73 |
Non-Essential Amino Acids (g/100 g dry matter) | ||||||
Alanine *** | 2.33 | 2.54 | 2.65 | 2.12 | 2.02 | 2.05 |
Asparagine *** | 3.24 | 3.85 | 4.14 | 3.08 | 3.34 | 3.21 |
Glutamic acid *** | 6.34 | 7.62 | 8.45 | 6.23 | 6.86 | 6.32 |
Glycine *** | 2.65 | 2.59 | 2.62 | 2.04 | 2.66 | 2.43 |
Proline *** | 2.16 | 2.28 | 2.47 | 1.95 | 1.99 | 1.90 |
Serine *** | 2.12 | 2.16 | 2.24 | 1.88 | 2.39 | 1.95 |
Tyrosine *** | 2.85 | 2.92 | 3.27 | 2.32 | 3.15 | 2.33 |
Fry Perfomance | |||||
---|---|---|---|---|---|
Variables | D1 | D2 | D3 | F | P |
IW (g) | 0.0837 ± 0.007 a | 0.0743 ± 0.005 a | 0.0700 ± 0.011 a | 2.078 | 0.220 |
FW (g) | 0.8090 ± 0.138 a | 0.8487 ± 0.516 a | 0.6840 ± 0.495 a | 1.850 | 0.250 |
G (g) | 0.7253 ± 0.144 a | 0.7743 ± 0.052 a | 0.8140 ± 0.061 a | 1.5513 | 0.299 |
SGR (%/day) | 7.5400 ± 0.838 a | 8.1187 ± 0.302 a | 7.6155 ± 0.783 a | 0.648 | 0.560 |
GFCR | 2.1933 ± 0.814 a | 2.2833 ± 0.238 a | 2.1650 ± 0.064 a | 0.035 | 0.960 |
PER | 0.0191 ± 0.0038 a | 0.0204 ± 0.0013 a | 0.0162 ± 0.0016 a | 1.878 | 0.246 |
SR (%) | 90.00 ± <0.001 a | 96.70 ± 5.773 b | 90.00 ± <0.001 a | 144.40 | <0.001 |
Incidence cost | 11.36 | 8.75 | 8.27 | - | - |
Profit index | 0.3 | 0.4 | 0.5 | - | - |
Fingerlings | D4 | D5 | D6 | F | P |
IW (g) | 0.8090 ± 0.138 a | 0.8487 ± 0.516 a | 0.6840 ± 0.495 a | 1.850 | 0.250 |
FW (g) | 3.9740 ± 0.224 a | 3.4367 ± 0.616 a | 2.0910 ± 0.169 b | 12.220 | 0.011 |
G (g) | 3.1650 ± 0.100 a | 2.5880 ± 0.577 a | 1.4075 ± 0.119 b | 13.336 | 0.009 |
SGR (%/day) | 3.3340 ± 0.243 a | 2.8947 ± 0.281 b | 2.3275 ± 0.0168 b | 11.008 | 0.015 |
GFCR | 2.0467 ± 0.085 a | 3.1867 ± 0.293 b | 5.2450 ± 0.431 c | 81.809 | <0.001 |
PER | 0.0989 ± 0.0031 a | 0.0809 ± 0.0180 a | 0.0439 ± 0.0037 b | 13.334 | 0.009 |
SR (%) | 90.00 ± <0.001 a | 93.33 ± 5.774 b | 90.00 ± <0.001 a | 77.45 | <0.001 |
Incidence cost | 1.96 | 1.90 | 2.50 | - | - |
Profit index | 0.8 | 0.9 | 1.1 | - | - |
Subadult to Adult | D4 | D5 | D6 | F | P |
IW (g) | 3.9740 ± 0.224 a | 3.4367 ± 0.616 a | 2.0915 ± 0.169 b | 12.220 | 0.011 |
FW (g) | 10.7100 ± 0.629 a | 8.4400 ± 2.268 a,b | 4.6250 ± 0.502 b | 9.809 | 0.018 |
G (g) | 6.7360 ± 0.53 a | 5.0033 ± 1.757 a,b | 2.5335 ± 0.333 b | 7.724 | 0.029 |
SGR (%/day) | 1.1767 ± 0.061 a | 1.0467 ± 0.198 a | 0.9450 ± 0.035 a | 2.032 | 0.225 |
GFCR | 2.0367 ± 0.200 a | 3.2967 ± 0.545 b | 3.640 ± 0.665 b | 8.578 | 0.024 |
PER | 0.2102 ± 0.0167 a | 0.1564 ± 0.05492 ab | 0.0797 ± 0.0104 b | 7.849 | 0.028 |
SR (%) | 77.3333 ± 2.0817 a | 89.6333 ± 4.7035 b | 70.8500 ± 4.0501 a | 19.084 | 0.0025 |
Incidence cost | 0.73 | 0.77 | 1.13 | - | - |
Profit index | 1.9 | 2.3 | 2.9 | - | - |
Weeks | D1 | D2 | D3 | F | P |
Initial weight | 0.0837 ± 0.007 | 0.0743 ± 0.005 | 0.0700 ± 0.011 | 2.078 | 0.220 |
Week 1 | 0.1247 ± 0.172 | 0.1167 ± 0.016 | 0.0920 ± 0.008 | 2.895 | 0.146 |
Week 2 | 0.2480 ± 0.033 a | 0.2113 ± 0.041 a,b | 0.1355 ± 0.002 b | 6.849 | 0.037 |
Week 3 | 0.4817 ± 0.021 a | 0.2923 ± 0.102 b | 0.2370 ± 0.014 b | 9.867 | 0.018 |
Week 4 | 0.8487 ± 0.155 a | 0.4387 ± 0.027 b | 0.3450 ± 0.027 b | 13.928 | 0.009 |
Week 5 | 0.8090 ± 0.137 a | 0.8487 ± 0.052 a | 0.6840 ± 0.049 a | 1.850 | 0.250 |
Week 6 | 1.0063 ± 0.060 a | 1.0307 ± 0.200 a | 0.8370 ± 0.068 a | 1.362 | 0.337 |
D4 | D5 | D6 | |||
Week 7 | 1.3160 ± 0.042 a | 1.2587 ± 0.212 a | 1.0670 ± 0.048 a | 2.029 | 0.226 |
Week 8 | 1.6290 ± 0.092 a | 1.5953 ± 0.216 a | 1.3505 ± 0.445 a | 2.324 | 0.193 |
Week 9 | 2.0443 ± 0.096 a | 1.9787 ± 0.223 a | 1.6190 ± 0.072 a | 5.623 | 0.053 |
Week 10 | 2.6067 ± 0.139 a | 2.3803 ± 0.306 a,b | 1.8005 ± 0.094 b | 8.485 | 0.025 |
Week 11 | 3.2800 ± 0.235 a | 2.8560 ± 0.441 a | 1.8875 ± 0.121 b | 11.501 | 0.013 |
Week 12 | 3.9740 ± 0.224 a | 3.4367 ± 0.616 a | 2.0915 ± 0.169 b | 12.222 | 0.012 |
Week 13 | 4.8200 ± 0.164 a | 4.1400 ± 0.466 a | 2.3350 ± 0.125 b | 12.583 | 0.011 |
Week 14 | 5.5600 ± 0.403 a | 4.3967 ± 0.819 a | 2.5250 ± 0.219 b | 16.260 | 0.006 |
Week 15 | 6.3567 ± 0.580 a | 4.7067 ± 0.929 a,b | 2.7500 ± 0.240 b | 16.054 | 0.007 |
Week 16 | 6.7033 ± 0.280 a | 5.0500 ± 1.058 a,b | 3.0900 ± 0.184 b | 15.970 | 0.007 |
Week 17 | 7.4100 ± 0.302 a eggs | 5.5133 ± 1.210 a,b | 3.0650 ± 0.177 b | 16.548 | 0.006 |
Week 18 | 7.7867 ± 0.448 a | 5.9000 ± 1.272 a | 3.3300 ± 0.226 b | 16.177 | 0.007 |
Week 19 | 8.7133 ± 0.520 a | 6.4867 ± 1.677 a,b eggs | 3.2800 ± 0.269 b | 13.994 | 0.009 |
Week 20 | 9.1267 ± 0.615 a eggs | 6.7733 ± 1.708 a,b | 3.7500 ± 0.382 b | 12.882 | 0.012 |
Week 21 | 9.5233± 0.527 a | 7.4000± 2.053 a,b | 3.9300± 0.339 b | 10.322 | 0.017 |
Week 22 | 9.5733 ± 0.665 a | 7.8067 ± 2.128 a,b | 4.2750 ± 0.559 b | 8.727 | 0.023 |
Week 23 | 9.6800 ± 1.773 a | 8.0333 ± 2.073 a,b | 4.4900 ± 0.424 b | 8.755 | 0.023 |
Week 24 | 10.3433 ± 0.885 a | 8.3133 ± 2.234 a,b | 4.5750 ± 0.459 b | 6.959 | 0.036 |
Week 25 | 10.7100 ± 0.629 a | 8.4400 ± 2.268 a,b | 4.6250 ± 0.502 b | 9.737 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luthada-Raswiswi, R.W.; O’Brien, G.; Mukaratirwa, S. Fishmeal Replacement with Animal Protein Source (Crocodylus niloticus Meat Meal) in Diets of Mozambique Tilapia (Oreochromis mossambicus) of Different Size Groups. Appl. Sci. 2022, 12, 7211. https://doi.org/10.3390/app12147211
Luthada-Raswiswi RW, O’Brien G, Mukaratirwa S. Fishmeal Replacement with Animal Protein Source (Crocodylus niloticus Meat Meal) in Diets of Mozambique Tilapia (Oreochromis mossambicus) of Different Size Groups. Applied Sciences. 2022; 12(14):7211. https://doi.org/10.3390/app12147211
Chicago/Turabian StyleLuthada-Raswiswi, Rendani Winnie, Gordon O’Brien, and Samson Mukaratirwa. 2022. "Fishmeal Replacement with Animal Protein Source (Crocodylus niloticus Meat Meal) in Diets of Mozambique Tilapia (Oreochromis mossambicus) of Different Size Groups" Applied Sciences 12, no. 14: 7211. https://doi.org/10.3390/app12147211
APA StyleLuthada-Raswiswi, R. W., O’Brien, G., & Mukaratirwa, S. (2022). Fishmeal Replacement with Animal Protein Source (Crocodylus niloticus Meat Meal) in Diets of Mozambique Tilapia (Oreochromis mossambicus) of Different Size Groups. Applied Sciences, 12(14), 7211. https://doi.org/10.3390/app12147211