Optimum Pressurization Mechanism for a Non-Electrical Piston-Driven Infusion Pump
Abstract
:1. Introduction
2. Pressurization Mechanisms
2.1. Prototypes Using a Pressing Rigid Plate
2.2. Prototypes Using Squeezing Rollers
2.3. Prototypes Using Inflated Air Bags
3. Evaluation of Flow Performance
3.1. Gravimetric Test Bench
3.2. Tests of Flow Performance
4. Discussion
5. Summary and Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin-Schild, S.; Morales, M.M.; Khaja, A.M.; Barreto, A.D.; Hallevi, H.; Abraham, A.; Sline, R.; Johns, E.; Grotta, J.C.; Savitz, S.I. Is the drip-and-ship approach to delivering thrombolysis for acute ischemic stroke safe? J. Emerg. Med. 2011, 41, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Goltser, A.; Soleyman-Zomalan, E.; Kresch, F.; Motov, S. Short (low-dose) ketamine infusion for managing acute pain in the ED: Case-report series. Am. J. Emerg. Med. 2015, 33, 601.e5–601.e7. [Google Scholar] [CrossRef] [PubMed]
- Millin, M.G.; Kim, S.; Schmidt, T.A.; Daya, M.R.; Fujisaki, B. Intermittent bolus dosing of lidocaine in emergency medical services—An alternative to bolus followed by a drip. Prehospital Emerg. Care 2006, 10, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Dunphy, K.; Finlay, I.; Rathbone, G.; Gilbert, J.; Hicks, F. Rehydration in palliative and terminal care—If not why not. Palliat. Med. 1995, 9, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Letson, H.L.; Dobson, G.P. 3% NaCl adenosine, lidocaine, Mg2+ (ALM) bolus and 4 hours drip infusion reduces noncompressible hemorrhage by 60% in a rat model. J. Trauma Acute Care Surg. 2017, 82, 1063–1072. [Google Scholar] [CrossRef]
- Kumagai, M.; Yamashita, M. Sacral intervertebral approach for epidural-anesthesia in infants and children—Application of drip and tube method. Anaesth. Intensive Care 1995, 23, 469–471. [Google Scholar] [CrossRef]
- Ayulo, M.A.J.; Phillips, K.E.; Tripathi, S. Safety and efficacy of IV lidocaine in the treatment of children and adolescents with status migraine. Pediatric Crit. Care Med. 2018, 19, 755–759. [Google Scholar] [CrossRef]
- Menahem, S.; Shvartzman, P. Continuous subcutaneous delivery of medications for home care palliative patients-using an infusion set or a pump? Supportive Care Cancer 2010, 18, 1165–1170. [Google Scholar] [CrossRef]
- Kodama, M.; Oyama, A.; Takagi, H. Control of interstitial pneumonia by drip infusion of megadose vitamin C, dehydroepiandrosterone and cortisol. A short review of our experience. In Vivo 2008, 22, 263–267. [Google Scholar]
- Gaby, A.R. Intravenous nutrient therapy: The “Myers’ Cocktail”. Altern. Med. Rev. 2002, 7, 389–403. [Google Scholar]
- Fulcher, E.M.; Frazier, M.S. Introduction to Intravenous Therapy for Health Professionals; Saunders/Elsevier: New York, NY, USA, 2007; pp. 2–4. [Google Scholar]
- Ausman, R.K. Intravascular Infusion Systems: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 1984; pp. 9–13. [Google Scholar]
- Blundell, J. Observations on transfusion of blood. Lancet 1829, 2, 302. [Google Scholar] [CrossRef]
- Latta, T. Note from Dr. Latta. Lancet 1832, 18, 640. [Google Scholar] [CrossRef]
- Latta, T. Saline venous injection in cases of malignant cholera, performed while in the vapour-bath. Lancet 1832, 19, 173–176. [Google Scholar] [CrossRef]
- Watkins, K.H. A note on pre-operative preparation of cases with grave intra-abdominal haemorrhages. Br. Med. J. 1935, 1, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Oros, D.; Penčić, M.; Šulc, J.; Čavić, M.; Stankovski, S.; Ostojić, G.; Ivanov, O. Smart intravenous infusion dosing system. Appl. Sci. 2021, 11, 513. [Google Scholar] [CrossRef]
- Pratim, R.P.; Thapa, N. A systematic review on real-time automated measurement of IV fluid level: Status and challenges. Measurement 2018, 129, 343–348. [Google Scholar]
- Cataldo, A.; Cannazza, G.; Giaquinto, N.; Trotta, A.; Andria, G. Microwave TDR for real-time control of intravenous drip infusions. IEEE Trans. Instrum. Meas. 2012, 61, 1866–1873. [Google Scholar] [CrossRef]
- Shimohira, C.; Hasegawa, Y.; Taniguchi, K.; Matsushima, M.; Kawabe, T.; Shikida, M. Development of micromachined flow sensor for drip infusion system. Microsyst. Technol. 2020, 26, 3677–3683. [Google Scholar] [CrossRef]
- Norgia, M.; Magnani, A.; Melchionni, D.; Pesatori, A. Drop measurement system for biomedical application. IEEE Trans. Instrum. Meas. 2015, 64, 2513–2517. [Google Scholar] [CrossRef]
- Volkov, I.V.; Zayarnyi, V.P.; Makarov, A.M.; Kobzev, N.V. Contactless measurement of low liquid flow rates. Meas. Tech. 2014, 57, 783–786. [Google Scholar] [CrossRef]
- Raghavendra, R.K.; Evangili, S.K. Design and development of IoT based intravenous infusion system. In Emerging Trends in Electrical, Communications, and Information Technologies: ICECIT 2018; Hitendra, S.T., Sankar, V., Shaik, R., Eds.; Springer: Singapore, 2020; Volume 569, pp. 487–499. [Google Scholar]
- Dinesh, K.J.R.; Ganesh, B.C.; Soundari, D.V.; Priyadharsini, K.; Karthi, S.P. A novel system design for intravenous infusion system monitoring for betterment of health monitoring system using ML-AI. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 2649–2655. [Google Scholar]
- Chen, C.-L.; Hsieh, N.-C.; Hung, L.-P. Developing a wireless based dynamic management mechanism for intravenous drip scheduling. Int. J. Ad Hoc Ubiquitous Comput. 2015, 19, 208–220. [Google Scholar] [CrossRef]
- Ting, S.-H.; Wu, C.-K.; Luo, C.-H. Design of dual mode RFID antenna for inventory management and IV fluid level warning system. Int. J. Antennas Propag. 2017, 2017, 2470291. [Google Scholar] [CrossRef]
- Skeel, R.T. Handbook of Cancer Chemotherapy, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003; p. 46. [Google Scholar]
- Podlog, L.; Dimmock, J.; Miller, J. A review of return to sport concerns following injury rehabilitation: Practitioner strategies for enhancing recovery outcomes. Phys. Ther. Sport 2011, 12, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Moreland, B.; Kakara, R.; Henry, A. Trends in nonfatal falls and fall-related injuries among adults aged ≥65 years—United States, 2012–2018. CDC Morb. Mortal. Wkly. Rep. MMWR 2020, 69, 875–881. [Google Scholar] [CrossRef]
- Akiyama, A.; Yokouchi, K. Portable Instillation Apparatus and Method of Replenishing Instillation Solution in Instillation Container Portable Apparatus. Japan Patent JP2005246037A, 15 September 2005. [Google Scholar]
- Xu, W.-X. Shoulder-Mountable Intravenous Drip Pole. Chinese Patent TWM360702U, 11 July 2009. [Google Scholar]
- EZ Pole. Available online: https://www.red-dot.org/project/ez-pole-27529 (accessed on 9 March 2022).
- Wu, M.-F.; Chen, C.-S.; Chen, I.-S.; Kuo, T.-H.; Wen, C.-Y.; Sethares, W.A. Design of carryable intravenous drip frame with automatic balancing. Sensors 2020, 20, 793. [Google Scholar] [CrossRef]
- Nu-Drip. Available online: https://www.designboom.com/project/nu-drip/ (accessed on 9 March 2022).
- IV-Walk. Available online: https://www.alissarees.com/2017/02/iv-walk/ (accessed on 10 March 2022).
- IVWear. Available online: https://campus.groningen.nl/en/news/ivwear-takes-wearable-infusion-to-market (accessed on 10 March 2022).
- Ivy Duo+. Available online: https://www.ivymedical.nl/ (accessed on 10 March 2022).
- Sayed-Kassem, A.; Kozah, N.; Hajj-Moussa, G.; Harb, R.; Zaylaa, A.J. BMIVPOT, a fully automated version of the intravenous pole: Simulation, design, and evaluation. J. Healthc. Eng. 2020, 2020, 7963497. [Google Scholar] [CrossRef]
- Derlien, M.L.C. Apparatus for Delivering Fluids with Controlled Rates of Flow. U.S. Patent US4180067A, 25 December 1979. [Google Scholar]
- Mitchell, R.J. Vacuum Infusion Device. WIPO Patent WO1991016093A1, 31 October 1991. [Google Scholar]
- Yamada, K.; Yamanaka, J. Liquid Injection Device. WIPO Patent WO1995028977A1, 2 November 1995. [Google Scholar]
- Minezaki, S. Continuous Liquid Medicine Injector. Japan Patent JP2001333980A, 4 December 2001. [Google Scholar]
- Nakagawa, M.; Nobuyasu, Y.; Okada, M.; Watanabe, Y. Liquid Supply Device. WIPO Patent WO2017134737A1, 10 August 2017. [Google Scholar]
- Nakagawa, M.; Iwasaki, U.; Watanabe, Y. Liquid Supply System. Japan Patent JP6298208B1, 20 March 2018. [Google Scholar]
- Sakamoto, K. Liquid Chemical Injection Device. Japan Patent JPH09248337A, 22 September 1997. [Google Scholar]
- Lin, S.-L.; Lin, Y.-Y.; Lin, T.-Y. Portable Infusion Device. Chinese Patent TW201639602A, 16 November 2016. [Google Scholar]
- Suefuji, K. Portable Intravenous Drip Device. Japan Patent JP2018068919A, 10 May 2018. [Google Scholar]
- Arita, E.; Ooyanai, T. Infusion Device for Liquid Medicine. Japan Patent JPH09262290A, 7 October 1997. [Google Scholar]
- Kushishitamachi, J.; Ariizumi, K. Extrusion Apparatus for Medical Liquid and Method for It. Japan Patent JPH05337177A, 21 December 1993. [Google Scholar]
- Kano, C.; Hiroura, M. Infusion Bag Pressurizing Apparatus. Japan Patent JP2004230032A, 19 August 2004. [Google Scholar]
- Yuki, T.; Harada, M.; Ito, N. Push-Out Device. Japan Patent JP2011019709A, 3 February 2011. [Google Scholar]
- Suefuji, K. Portable Intravenous Drip Device. Japan Patent JP2016182329A, 20 October 2016. [Google Scholar]
- ISO 28620; International Standard for Medical Devices—Non-Electrically Driven Portable Infusion Devices. ISO: Geneva, Switzerland, 2020.
- Japan Ministry of Health, Labor and Welfare. Revision of Approval Criteria for Pressurized Drug Infusion Devices by Japan Ministry of Health, Labor and Welfare; No. 0201-13; Japan Ministry of Health, Labor and Welfare: Tokyo, Japan, 2018. (In Japanese)
- Hudson, J.B. Surface Science, An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Su, C.-M.; Lin, W.-T.; Yang, C.-T. Flow calibration system for micro-flowrate delivery and measurement. In Proceedings of the NCSL International Workshop and Symposium, National Harbor, MD, USA, 21–25 January 2008. [Google Scholar]
- Claus, M.; Ulrich, K.; John, F. Design considerations and initial validation of a liquid microflow calibration setup using parallel operated syringe pumps. Meas. Sci. Technol. 2010, 21, 074004. [Google Scholar]
- Doihara, R.; Shimada, T.; Cheong, K.-H.; Terao, Y. Liquid low-flow calibration rig using syringe pump and weighing tank system. Flow Meas. Instrum. 2016, 50, 90–101. [Google Scholar] [CrossRef]
- Cheong, K.-H.; Doihara, R.; Shimada, T.; Terao, Y. Gravimetric system using high-speed double switching valves for low liquid flow rates. Meas. Sci. Technol. 2018, 29, 075304. [Google Scholar] [CrossRef]
- Bissig, H.; Tschannen, M.; de Huu, M. Micro flow facility for traceability in steady, pulsating flow. Flow Meas. Instrum. 2015, 44, 34–42. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, K.-H.; Doihara, R.; Furuichi, N.; Nakagawa, M.; Karasawa, R.; Kato, Y.; Kageyama, K.; Akasaka, T.; Onuma, Y.; Kato, T. Optimum Pressurization Mechanism for a Non-Electrical Piston-Driven Infusion Pump. Appl. Sci. 2022, 12, 8421. https://doi.org/10.3390/app12178421
Cheong K-H, Doihara R, Furuichi N, Nakagawa M, Karasawa R, Kato Y, Kageyama K, Akasaka T, Onuma Y, Kato T. Optimum Pressurization Mechanism for a Non-Electrical Piston-Driven Infusion Pump. Applied Sciences. 2022; 12(17):8421. https://doi.org/10.3390/app12178421
Chicago/Turabian StyleCheong, Kar-Hooi, Ryouji Doihara, Noriyuki Furuichi, Masaharu Nakagawa, Ruriko Karasawa, Yoshihiro Kato, Kazunori Kageyama, Takuro Akasaka, Yuki Onuma, and Takashi Kato. 2022. "Optimum Pressurization Mechanism for a Non-Electrical Piston-Driven Infusion Pump" Applied Sciences 12, no. 17: 8421. https://doi.org/10.3390/app12178421
APA StyleCheong, K.-H., Doihara, R., Furuichi, N., Nakagawa, M., Karasawa, R., Kato, Y., Kageyama, K., Akasaka, T., Onuma, Y., & Kato, T. (2022). Optimum Pressurization Mechanism for a Non-Electrical Piston-Driven Infusion Pump. Applied Sciences, 12(17), 8421. https://doi.org/10.3390/app12178421