Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Experimental Design
2.3. Determination of Body and Liver Weights
2.4. Preparation of Serum and Liver Samples
2.5. Assay of Hepatic Enzymes
2.5.1. Measurement of Catalase
2.5.2. Measurement of Superoxide Dismutase
2.5.3. Measurement of Glutathione
2.5.4. Measurement of Glutathione Reductase
2.5.5. Measurement of Glutathione Peroxidase
2.6. Serum Biochemical Parameters
2.7. Liver Histology
2.8. Statistical Analysis
3. Results
3.1. Effect of Ethanol and SP on the Survival and Parameters of Liver Regeneration
3.2. Effect of EtOH and SP on Histological Indicators (Congestion, Steatosis, Inflammation, Apoptosis, and Necrosis)
3.3. Effects of Treatment with EtOH and SP on Serum Concentrations of Cholesterol, Triacylglycerides, Glucose, and Albumin
3.4. Effect of SP on the Antioxidant Biomarkers Concentration in Rats with PH and Treatment with EtOH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Daim, M.M.; Abuzead, S.M.M.; Halawa, S.M. Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS ONE 2013, 8, e72991. [Google Scholar] [CrossRef] [PubMed]
- Kay, R.A. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 1991, 30, 555–573. [Google Scholar] [CrossRef]
- Belay, A. Spirulina (Arthrospira): Production and quality assurance. In Spirulina in Human Nutrition and Health; Gershwin, M.E., Belay, A., Eds.; CRC Press: New York, NY, USA, 2008; pp. 1–25. [Google Scholar] [CrossRef]
- Gorban, E.N.; Kuprash, L.P.; Gorban, N.E. Spirulina: Perspektivy ispol’zovaniia v meditsine [Spirulina: Perspectives of the application in medicine]. Likar. Sprav. 2003, 7, 100–110. (In Russian) [Google Scholar]
- Kameshwari, V.; Selvaraj, S.; Sundaramoorthy, S. Single Cell Protein Spirulina—A Nutrient Treasure. Res. J. Pharmacol. Pharmacodyn. 2020, 12, 49–54. [Google Scholar] [CrossRef]
- Anvar, A.; Nowruzi, B. Bioactive properties of spirulina: A review. Microb. Bioact. 2021, 4, 134–142. [Google Scholar] [CrossRef]
- Hossein, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and medical applications of Spirulina microalga. Mini-Rev. Med. Chem. 2013, 13, 1231–1237. [Google Scholar] [CrossRef]
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina—From growth to nutritional product: A review. Trends Food Sci. Technol. 2017, 69, 157–171. [Google Scholar] [CrossRef]
- Prabhu, S.; Vijayakumar, S.; Praseetha, P. Cyanobacterial metabolites as novel drug candidates in corona viral therapies: A review. Chronic Dis. Transl. Med. 2022, 1–12. [Google Scholar] [CrossRef]
- Mittal, A.; Kumar, P.V.; Banerjee, S.; Rao, A.R.; Kumar, A. Modulatory potential of Spirulina fusiformis on carcinogen metabolizing enzymes in Swiss albino mice. Phytother. Res. 1999, 13, 111–114. [Google Scholar] [CrossRef]
- Braune, S.; Krüger-Genge, A.; Kammerer, S.; Jung, F.; Küpper, J.H. Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life 2021, 11, 91. [Google Scholar] [CrossRef]
- Kasbi-Chadli, F.; Coué, M.; Aguesse, A.; Grit, I.; Souque, T.; Ferchaud-Roucher, V.; Ouguerram, K. Spirulina liquid extract prevents metabolic disturbances and improves liver sphingolipids profile in hamster fed a high-fat diet. Eur. J. Nutr. 2021, 60, 4483–4494. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Juárez, A.; Chamorro, G.; Alva-Sánchez, C.; Paniagua, N.; Pacheco-Rosado, J. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death. Pharm. Biol. 2016, 54, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, O.; Katoh, T.; Okuwaki, Y. Enhancement of antibody production in mice by dietary Spirulina platensis. J. Nutr. Sci. Vitaminol. 1994, 40, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.R.; Rosso, N.; Bedogni, G.; Tiribelli, C.; Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018, 38, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.M.; Reinus, J.F. Prevalence and natural history of alcoholic liver disease. Clin. Liver Dis. 2012, 16, 659–666. [Google Scholar] [CrossRef]
- Dong, X.; Liu, H.; Chen, F.; Li, D.; Zhao, Y. MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 in liver cells. Alcohol. Clin. Exp. Res. 2014, 38, 68–77. [Google Scholar] [CrossRef]
- Tiwari, A. Imbalance in antioxidant defence and human diseases: Multiple approach of natural antioxidants therapy. Curr. Sci. 2001, 81, 1179–1187. Available online: https://www.researchgate.net/journal/Current-Science-0011-3891 (accessed on 10 July 2022).
- Zimmerman, H.J.; Kodera, Y.; West, M. Rate of increase in plasma levels of cytoplasmic and mitochondrial enzymes in experimental carbon tetrachloride hepatotoxicity. J. Lab. Clin. Med. 1965, 66, 315–323. [Google Scholar] [CrossRef]
- Dinman, B.D.; Bernstein, I.A. Acute carbon tetrachloride hepatotoxicity. V. Enzymatic activity and structural concomitants during the regenerative phase. Arch. Environ. Health 1968, 16, 777–784. [Google Scholar] [CrossRef]
- Badrick, T.; Turner, P. Review and recommendations for the component tests in the liver function test profile. Indian J. Clin. Biochem. 2016, 31, 21–29. [Google Scholar] [CrossRef]
- Osna, N.A.; Donohue, T.M.; Kharbanda, K.K. Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol Res. Curr. Rev. 2017, 38, 147–161. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5513682/ (accessed on 10 July 2022).
- Torres-González, L.; Waksman-de Torres, N.; Pérez-Meseguer, J.; Muñoz-Espinosa, L.; Salazar-Aranda, R.; Cordero Pérez, P. Review of plants with hepatoprotective activity evaluated in México. Med. Univ. 2014, 16, 78–86. Available online: www.elsevier.es/en-revista-medicina-universitaria-304-articulo-review-plants-with-hepatoprotective-activity-X1665579614366029 (accessed on 10 July 2022).
- Madrigal-Santillan, E.; Madrigal-Bujaidar, E.; Alvarez-Gonzalez, I. Review of natural products with hepatoprotective effects. World J. Gastroenterol. 2014, 20, 14787–14804. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.S.; Cintra, R.G.; Barros, S.B.; Mancini- Filho, J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998, 31, 1075–1079. [Google Scholar] [CrossRef]
- Dartsch, P.C. Antioxidant potential of selected Spirulina platensis preparations. Phytother. Res. 2008, 22, 627–633. [Google Scholar] [CrossRef]
- Martínez-Galero, E.; Pérez-Pastén, R.; Perez-Juarez, A.; Fabila-Castillo, L.; Gutiérrez-Salmeán, G.; Chamorro, G. Preclinical antitoxic properties of Spirulina (Arthrospira). Pharm. Biol. 2016, 54, 1345–1353. [Google Scholar] [CrossRef]
- Higgins, G.M.; Anderson, R.M. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. Lab. Med. 1931, 12, 186–202. [Google Scholar]
- Panis, Y.; McMullan, D.M.; Emond, J.C. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery 1997, 121, 142–149. [Google Scholar] [CrossRef]
- Morales-González, J.A.; Gutiérrez-Salinas, J.; Hernández-Muñoz, R. Pharmacokinetics of the ethanol bioavailability in the regenerating rat liver induced by partial hepatectomy. Alcohol. Clin. Exp. Res. 1998, 22, 1557–1563. [Google Scholar] [CrossRef]
- Chen, Y.; Hata, T.; Rehman, F.; Kang, L.; Yang, L.; Kim, B.Y.S.; Nguyen, J.H. Visualization of hepatocellular regeneration in mice after partial hepatectomy. J. Surg. Res. 2019, 235, 494–500. [Google Scholar] [CrossRef]
- Lamas-Paz, A.; Hao, F.; Nelson, L.J.; Vázquez, M.T.; Canals, S.; Gómez Del Moral, M.; Martínez-Naves, E.; Nevzorova, Y.A.; Cubero, F.J. Alcoholic liver disease: Utility of animal models. World J. Gastroenterol. 2018, 24, 5063–5075. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.X.; Du, Y.C.; Zeng, T.A. Mini-review of the rodent models for alcoholic liver disease: Shortcomings, application, and future prospects. Toxicol. Res. 2021, 10, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Orrego, H.; Crossley, I.; Saldivia, V.; Medline, A.; Varghese, G.; Israel, Y. Long-term ethanol administration and short- and long-term liver regeneration after partial hepatectomy. J. Lab. Clin. Med. 1981, 97, 221–230. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Johansson, L.H.; Borg, L.A.H. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- Malström, B.; Andreasson, L.; Reinhammer, B. The Enzymes; Boyer, P., Ed.; Academic Press: New York, NY, USA, 1975; Volume 3. [Google Scholar]
- Baker, M.A.; Cerniglia, G.J.; Zaman, A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 1990, 190, 360–365. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Glutathione reductase. Methods Enzymol. 1985, 113, 484–490. [Google Scholar] [CrossRef]
- Forstrom, J.W.; Zakowski, J.J.; Tappel, A.L. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 1978, 17, 2639–2644. [Google Scholar] [CrossRef]
- Morales-González, J.A.; Gutiérrez-Salinas, J.; Yáñez, L.; VillagómezRico, C.; Badillo-Romero, J.; Hernández-Muñoz, R. Morphological and biochemical effects of a low ethanol dose on rat liver regeneration: Role of route and timing of administration. Dig. Dis. Sci. 1999, 44, 1963–1974. [Google Scholar] [CrossRef]
- Lieber, C.S. Alcohol: Its metabolism and interaction with nutrients. Annu. Rev. Nutr. 2000, 20, 395–430. [Google Scholar] [CrossRef]
- Rossi, R.E.; Conte, D.; Massironi, S. Diagnosis and treatment of nutritional deficiencies in alcoholic liver disease: Overview of available evidence and open issues. Dig. Liver Dis. 2015, 47, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Minicis, S.; Brenner, D.A. Oxidative stress in alcoholic liver disease: Role of NADPH oxidase complex. J. Gastroenterol. Hepatol. 2008, 23, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Vadiraja, B.B.; Gaikwad, N.W.; Madyastha, K.M. Hepatoprotective effect of C-phycocyanin: Protection for carbon tetrachloride and R-(+)-pulegone-mediated hepatotoxicity in rats. Biochem. Biophys. Res. Commun. 1998, 249, 428–431. [Google Scholar] [CrossRef]
- Vadiraja, B.B.; Madyastha, K.M. C-Phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochem. Biophys. Res. Commun. 2000, 275, 20–25. [Google Scholar] [CrossRef]
- Parikh, P.; Mani, U.; Iyer, U. Role of Spirulina in the Control of Glycemia and Lipidemia in Type 2 Diabetes Mellitus. J. Med. Food 2001, 4, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, U.V.; Desai, S.; Iyer, U. Studies on the Long-Term Effect of Spirulina Supplementation on Serum Lipid Profile and Glycated Proteins in NIDDM Patients. J. Nutraceuticals Funct. Med. Foods 2000, 2, 25–32. [Google Scholar] [CrossRef]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef]
- Colla, L.M.; Muccillo-Baisch, A.L.; Costa, J.A.V. Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Braz. Arch. Biol. Technol. 2008, 51, 405–411. [Google Scholar] [CrossRef]
- Lee, E.H.; Park, J.E.; Choi, Y.J.; Huh, K.B.; Kim, W.Y. A randomized study to establish the effects of Spirulina in type 2 diabetes mellitus patients. Nutr. Res. Pract. 2008, 2, 295–300. [Google Scholar] [CrossRef]
- Ansari, P.; Hannan, J.; Azam, S.; Flatt, P.; Abdel-Wahab, Y. Effects of Spirulina platensis on insulin secretion, DPP-IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. Br. J. Nutr. 2020, 124, 1021–1034. [Google Scholar] [CrossRef]
- Senthil, N.; Balu1, P.M.; Murugesan, K. Antihyperglycemic effect of spirulina, insulin and Morinda citrifolia against streptozotocin induced diabetic rats. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 537–559. [Google Scholar]
- Oettl, K.; Stauber, R.E. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br. J. Pharmacol. 2007, 15, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Minic, S.; Stanic-Vucinic, D.; Radomirovic, M.; Radibratovic, M.; Milcic, M.; Nikolic, M.; Cirkovic-Velickovic, T. Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin. Food Chem. 2017, 239, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Bae, C.S.; Ahn, T. Albumin infusion ameliorates liver injury in streptozotocin-induced diabetic rats. Vet. Med. 2022, 67, 245–256. [Google Scholar] [CrossRef]
- Radibratovic, M.; Minic, S.; Stanic-Vucinic, D.; Nikolic, M.; Milcic, M.; Cirkovic-Velickovic, T. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study. PLoS ONE 2016, 11, e0167973. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 15, 556–567. [Google Scholar] [CrossRef]
- Bindu, M.P.; Annamalai, P.T. Combined effect of alcohol and cigarette smoke on lipid peroxidation and antioxidant status in rats. Indian J. Biochem. Biophys. 2004, 41, 40–44. [Google Scholar]
- Tahir, M.; Sultana, S. Chrysin modulates ethanol metabolism in Wistar rats: A promising role against organ toxicities. Alcohol Alcohol. 2011, 46, 383–392. [Google Scholar] [CrossRef]
- Popovic, M.; Janicijevic-Hudomal, S.; Kaurinovic, B.; Rasic, J.; Trivic, S. Antioxidant effects of some drugs on ethanol-induced ulcers. Molecules 2009, 14, 816–826. [Google Scholar] [CrossRef]
- Guemouri, L.; Artur, Y.; Herbeth, B.; Jeandel, C.; Cuny, G.; Siest, G. Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood. Clin. Chem. 1991, 37, 1932–1937. [Google Scholar] [CrossRef]
- Radic, I.; Mijovic, M.; Tatalovic, N.; Mitic, M.; Lukic, V.; Joksimovic, B.; Petrovic, Z.; Ristic, S.; Velickovic, S.; Nestorovic, V.; et al. Protective effects of whey on rat liver damage induced by chronic alcohol intake. Hum. Exp. Toxicol. 2019, 38, 632–645. [Google Scholar] [CrossRef]
- Arauz, J.; Ramos-Tovar, E.; Muriel, P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Ann. Hepatol. 2016, 15, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver. World J. Gastroenterol. 2014, 20, 14672–14685. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Vasudevan, D.M. Alcohol-induced oxidative stress. Life Sci. 2007, 81, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Deleve, S.M.; Kaplowitz, N. Importance and regulation of hepatic glutathione. Semin. Liver Dis. 1990, 10, 251–256. [Google Scholar] [CrossRef]
- Zima, T.; Fialova, L.; Mestek, O.; Janebova, M.; Crkovska, J.; Malbohan, I.; Stipek, S.; Mikulikova, L.; Popov, P. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J. Biomed. Sci. 2001, 8, 59–70. [Google Scholar] [CrossRef]
- Bishnoi, M.; Chopra, K. Antioxidant Profile of Spirulina: A Blue-Green Microalga. In Spirulina in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA, 2007; pp. 101–118. [Google Scholar] [CrossRef]
- Al-Dhabi, N.; Valan-Arasu, M. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities. Evid. Based Complement. Altern. Med. 2016, 2016, 7631864. [Google Scholar] [CrossRef] [Green Version]
Group | Initial Body Weight (g) | Final Body Weight (g) | Body Weight Gain (g) | Resected Liver Mass (g) | Final liver Weight (g) | Restitution of Liver Mass (%) | Mortality (%) |
---|---|---|---|---|---|---|---|
Control | 259.52 ± 2.2 a | 316.3 ± 2.1 a | 56.78 ± 0.9 a | - | 9.77 ± 1.36 a | 100 a | 0 b |
PH | 239.03 ± 4.1 a | 247.32 ± 2.6 b | 7.99 ± 2.1 b | 7.34 ± 0.33 a,b | 8.57 ± 0.64 a,b | 83.64 ± 1.11 a,b | 0 b |
PH-EtOH | 256.33 ± 4.3 a | 233.85 ± 2.4 b | −22.48 ± 2.6 c | 7.89 ± 0.22 a,b | 6.94 ± 0.30 b | 68.29 ± 3.21 c | 16.6 a |
PH-SP | 245.98 ± 3.0 a | 257.67 ± 3.9 a,b | 11.69 ± 1.9 b | 9.25 ± 0.70 a | 7.25 ± 0.70 a,b | 55.14 ± 4.81 c | 0 b |
PH-EtOH-SP | 235.01 ± 3.1 a | 245.74 ± 3.1 b | 10.73 ± 2.7 b | 6.82 ± 1.04 b | 7.98 ± 0.11 a,b | 71.08 ± 3.0 b,c | 0 b |
Group | Apoptosis | Necrosis | Congestion |
---|---|---|---|
Control | − | − | − |
PH | ++ | + | ++ |
PH-EtOH | +++ | +++ | +++ |
PH-SP | + | + | ++ |
PH-SP-EtOH | − | − | + |
Group | Cholesterol (mg/dL) | Triacylglycerol (mg/dL) | Glucose (mg/dL) | Albumin (g/dL) |
---|---|---|---|---|
Control | 59.81 ± 1.0 a | 81.10 ± 2.1 b | 116.92 ± 2.0 b | 3.54 ± 0.10 a |
PH | 29.97 ± 1.2 b,c | 106.28 ± 4.4 b | 167.19 ± 1.3 a | 3.06 ± 0.11 b |
PH-EtOH | 24.97 ± 0.4 c | 179.90 ± 3.9 a | 177.63 ± 2.4 a | 2.80 ± 0.13 b |
PH-SP | 44.30 ± 2.2 a,b | 105.65 ± 6.2 b | 151.02 ± 4.0 a,c | 3.20 ± 0.20 a,b |
PH-SP-EtOH | 30.22 ± 7.1 b,c | 86.29 ± 2.8 b | 129.68 ± 1.4 b,c | 3.61 ± 0.17 a |
Group | CAT (nmol/min/mg Protein) | SOD (U/min/mg/Protein) | GSH (µM/mg/Protein) | GR (nmol/min/mg Protein) | GPX (nmol/min/mg Protein) |
---|---|---|---|---|---|
Control | 19.5463 ± 0.8 a | 4.2687 ± 0.9 b | 2.4533 ± 0.10 a | 1.0513 ± 0.16 b | 7.1698 ± 0.8 a |
PH | 12.3718 ± 1.0 b,c | 1.1548 ± 0.9 c | 2.7857 ± 0.11 a | 1.4209 ± 0.17 b | 4.5472 ± 1.3 b |
PH-EtOH | 10.5729 ± 1.1 b | 7.2067 ± 1.1 a | 1.9497 ± 0.8 b | 0.8413 ± 0.9 c | 0.6236 ± 0.1 c |
PH-SP | 14.0224 ± 2.0 a,b | 5.8727 ± 1.0 a,b | 2.3235 ± 0.8 a,b | 1.8676 ± 0.14 a | 4.2464 ± 0.9 b |
PH-SP-EtOH | 16.47624 ± 1.8 a,c | 3.86112 ± 0.3 b | 2.48045 ± 0.2 a | 2.8339 ± 0.19 a | 6.5059 ± 1.1 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Juárez, A.; Aguilar-Faisal, J.L.; Posadas-Mondragón, A.; Santiago-Cruz, J.A.; Barrientos-Alvarado, C.; Mojica-Villegas, M.A.; Chamorro-Cevallos, G.A.; Morales-González, J.A. Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver. Appl. Sci. 2022, 12, 8626. https://doi.org/10.3390/app12178626
Pérez-Juárez A, Aguilar-Faisal JL, Posadas-Mondragón A, Santiago-Cruz JA, Barrientos-Alvarado C, Mojica-Villegas MA, Chamorro-Cevallos GA, Morales-González JA. Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver. Applied Sciences. 2022; 12(17):8626. https://doi.org/10.3390/app12178626
Chicago/Turabian StylePérez-Juárez, Angélica, José Leopoldo Aguilar-Faisal, Araceli Posadas-Mondragón, José Angel Santiago-Cruz, Cornelio Barrientos-Alvarado, María Angélica Mojica-Villegas, Germán Alberto Chamorro-Cevallos, and José A. Morales-González. 2022. "Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver" Applied Sciences 12, no. 17: 8626. https://doi.org/10.3390/app12178626
APA StylePérez-Juárez, A., Aguilar-Faisal, J. L., Posadas-Mondragón, A., Santiago-Cruz, J. A., Barrientos-Alvarado, C., Mojica-Villegas, M. A., Chamorro-Cevallos, G. A., & Morales-González, J. A. (2022). Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver. Applied Sciences, 12(17), 8626. https://doi.org/10.3390/app12178626