Characterization of Balsamic Vinegars Using High-Performance Liquid Chromatography and Gas Chromatography
Abstract
:1. Introduction
2. Separation Methods for Characterization of Balsamic Vinegars
2.1. Gas Chromatography
2.2. Liquid Chromatography
2.3. Other Analytical Techniques
3. Characterization of the Compounds Presented in Balsamic Vinegars
3.1. Organic Acids
3.2. Furanic Compounds
3.3. Phenolic Compounds
3.4. Amino Acids and Amines
3.5. Esters
3.6. Acetates
3.7. Alcohols
3.8. Aldehydes and Ketones
3.9. Lactones
3.10. Odorous Compounds
3.11. Sugars
3.12. Dicarbonyl Compounds
3.13. Other Compounds Identified by GC
3.14. Other Compounds Identified by LC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oster, M. Herbal Vinegar: Flavored Vinegars, Mustards, Chutneys, Preserves, Conserves, Salsas, Cosmetic Uses, Household Tips, 1st ed.; Storey Publishing: North Adams, MA, USA, 2018. [Google Scholar]
- Mattia, G. Balsamic vinegar of Modena: From product to market value: Competitive strategy of a typical Italian product. Br. Food J. 2004, 106, 722–745. [Google Scholar] [CrossRef]
- European Council Regulation (EC) 813/2000 of 17 April 2000 Supplementing the Annex to Commission Regulation (EC) No 1107/96 on the Registration of Geographical Indications and Designations of Origin under the Procedure Laid down in Article 17 of Regulation (EEC) No 2081/92. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000R0813 (accessed on 22 June 2022).
- Giudici, P.; Lemmetti, F.; Mazza, S. The Balsamic Family. In Balsamic Vinegars: Tradition, Technology, Trade, 1st ed.; Springer International Publishing: New York, NY, USA, 2015; pp. 33–59. [Google Scholar]
- Gullo, M.; Caggia, C.; De Vero, L.; Giudici, P. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int. J. Food Microbiol. 2006, 106, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Giudici, P.; Gullo, M.; Solieri, L. Traditional Balsamic Vinegar. In Vinegars of the World, 1st ed.; Solieri, L., Giudici, P., Eds.; Springer Milan: Milano, Italy, 2009; pp. 157–177. [Google Scholar]
- Torija, M.J.; Mateo, E.; Vegas, C.A.; Jara, C.; González, A.; Poblet, M.; Reguant, C.; Guillamon, J.M.; Mas, A. Effect of wood type and thickness on acetification kinetics in traditional vinegar production. Int. J. Wine Res. 2009, 1, 155–160. [Google Scholar]
- Iburg, A. Lexikon Octů a Olejů: Původ, Chuť, Použití, Recepty, 1st ed.; Rebo: Dobřejovice, Czech Republic, 2008. [Google Scholar]
- European Commission Regulation (EC) 583/2009 of 3 July 2009 Entering a Name in the Register of Protected Designations of Origin and Protected Geographical Indications [Aceto Balsamico di Modena (PGI)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009R0583 (accessed on 22 June 2022).
- Chinnici, F.; Durán Guerrero, E.; Sonni, F.; Natali, N.; Natera, R.; Riponi, C. Gas Chromatography−Mass Spectrometry (GC−MS) Characterization of Volatile Compounds in Quality Vinegars with Protected European Geographical Indication. J. Agric. Food Chem. 2009, 57, 4784–4792. [Google Scholar] [CrossRef]
- Natera, R.; Castro, R.; Hernández, M.J.; García-Barroso, C. Chemometric Studies of Vinegars from Different Raw Materials and Processes of Production. J. Agric. Food Chem. 2003, 51, 3345–3351. [Google Scholar] [CrossRef] [PubMed]
- Lalou, S.; Hatzidimitriou, E.; Papadopoulou, M.; Kontogianni, V.G.; Tsiafoulis, C.G.; Gerothanassism, I.P.; Tsimidou, M.Z. Beyond traditional balsamic vinegar: Compositional and sensorial characteristics of industrial balsamic vinegars and regulatory requirements. J. Food Compos. Anal. 2015, 43, 175–184. [Google Scholar] [CrossRef]
- Masino, F.; Chinnici, F.; Bendini, A.; Montevecchi, G.; Antonelli, A. A study on relationships among chemical, physical, and qualitative assessment in traditional balsamic vinegar. Food Chem. 2008, 106, 90–95. [Google Scholar] [CrossRef]
- Chinnici, F.; Durán-Guerrero, E.; Riponi, C. Discrimination of some European vinegars with protected denomination of origin as a function of their amino acid and biogenic amine content. J. Sci. Food Agric. 2016, 96, 3762–3771. [Google Scholar] [CrossRef]
- Yun, J.-H.; Kim, Y.-J.; Koh, K.-H. Investigation into factors influencing antioxidant capacity of vinegars. Appl. Biol. Chem. 2016, 59, 495–509. [Google Scholar] [CrossRef]
- Chinnici, F.; Masino, F.; Antonelli, A. Determination of Furanic Compounds in Traditional Balsamic Vinegars by Ion-Exclusion Liquid Chromatography and Diode-Array Detection. J. Chromatogr. Sci. 2003, 41, 305–310. [Google Scholar] [CrossRef]
- Caligiani, A.; Silva, G.; Palla, G. Determination of 2,3-Butanediol and 2-Hydroxybutanone Stereoisomers in Batteries of Traditional Balsamic Vinegar. J. Agric. Food Chem. 2007, 55, 7810–7815. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Senra, L.; Fernandes, J.O.; Cunha, S.C. Gas Chromatography–Mass Spectrometry Analysis of 4-Methylimidazole in Balsamic Vinegars and Processed Sauces. Food Anal. Methods 2014, 7, 1519–1525. [Google Scholar] [CrossRef]
- Bononi, M.; Tateo, F. Determination of furan by headspace solid-phase microextraction–gas chromatography–mass spectrometry in balsamic vinegars of Modena (Italy). J. Food Compos. Anal. 2009, 22, 79–82. [Google Scholar] [CrossRef]
- Giordano, L.; Calabrese, R.; Davoli, E.; Rotilio, D. Quantitative analysis of 2-furfural and 5-methylfurfural in different Italian vinegars by headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry using isotope dilution. J. Chromatogr. A 2003, 1017, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Manzini, S.; Durante, C.; Baschieri, C.; Cocchi, M.; Sighinolfi, S.; Totaro, S.; Marchetti, A. Optimization of a Dynamic Headspace—Thermal Desorption—Gas Chromatography/Mass Spectrometry procedure for the determination of furfurals in vinegars. Talanta 2011, 85, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, E.M.S.M.; Lopes, J.F. Simple gas chromatographic method for furfural analysis. J. Chromatogr. A 2009, 1216, 2762–2767. [Google Scholar] [CrossRef]
- Cirlini, M.; Caligiani, A.; Palla, G. Formation of glucose and fructose acetates during maturation and ageing of balsamic vinegars. Food Chem. 2009, 112, 51–56. [Google Scholar] [CrossRef]
- Sighinolfi, S.; Baneschi, I.; Manzini, S.; Lorenzo, T.; Dallai, L.; Marchetti, A. Determination of glycerol carbon stable isotope ratio for the characterization of Italian balsamic vinegars. J. Food Compos. Anal. 2018, 69, 33–38. [Google Scholar] [CrossRef]
- Erbe, T.; Brückner, H. Chiral amino acid analysis of vinegars using gas chromatography—Selected ion monitoring mass spectrometry. Int. J. Food Res. Technol. 1998, 207, 400–409. [Google Scholar] [CrossRef]
- Corsini, L.; Castro, R.; Barroso, C.G.; Durán-Guerrero, E. Characterization by gas chromatography-olfactometry of the most odour-active compounds in Italian balsamic vinegars with geographical indication. Food Chem. 2019, 272, 702–708. [Google Scholar] [CrossRef]
- Ugliano, M.; Squillante, E.; Genovese, A.; Moio, L. Investigation on aroma compounds of Modena balsamic vinegars. In Flavour Research at the Dawn of the Twenty-First Century, Proceedings of the 10th WeurmanFlavour Research Symposium, Beaune, France, 25–28 June 2002; Editions Tec & Doc: Paris, France, 2003; pp. 733–736. [Google Scholar]
- Cocchi, M.; Lambertini, P.; Manzini, D.; Marchetti, A.; Ulrici, A. Determination of Carboxylic Acids in Vinegars and in Aceto Balsamico Tradizionale di Modena by HPLC and GC Methods. J. Agric. Food Chem. 2002, 50, 5255–5526. [Google Scholar] [CrossRef] [PubMed]
- Cocchi, M.; Durante, C.; Grandi, M.; Lambertini, P.; Manzini, D.; Marchetti, A. Simultaneous determination of sugars and organic acids in aged vinegars and chemometric data analysis. Talanta 2006, 69, 1166–1175. [Google Scholar] [CrossRef]
- Durán-Guerrero, E.; Castro Mejías, R.; Marín, R.N.; Barroso, C.G. Optimization of stir bar sorptive extraction applied to the determination of pesticides in vinegars. J. Chromatogr. A 2007, 1165, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Plessi, M.; Bertelli, D.; Miglietta, F. Extraction and identification by GC-MS of phenolic acids in traditional balsamic vinegar from Modena. J. Food Compos. Anal. 2006, 19, 49–54. [Google Scholar] [CrossRef]
- Sinanoglou, V.; Zoumpoulakis, P.; Fotakis, C.; Kalogeropoulos, N.; Sakellari, A.; Karavoltsos, S.; Strati, I. On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars. Antioxidants 2018, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, N.; Sasamoto, K.; Takino, M.; Yamashita, S. Simultaneous determination of preservatives in beverages, vinegar, aqueous sauces, and quasi-drug drinks by stir-bar sorptive extraction (SBSE) and thermal desorption GC–MS. Anal. Bioanal. Chem. 2002, 373, 56–63. [Google Scholar] [CrossRef]
- Durán-Guerrero, E.; Chinnici, F.; Natali, N.; Riponi, C. Evaluation of volatile aldehydes as discriminating parameters in quality vinegars with protected dikar geographical indication. J. Sci. Food Agric. 2015, 95, 2395–2403. [Google Scholar] [CrossRef]
- Callejón, R.M.; Torija, M.J.; Mas, A.; Morales, M.L.; Troncoso, A.M. Changes of volatile compounds in wine vinegars during their elaboration in barrels made from different woods. Food Chem. 2010, 120, 561–571. [Google Scholar] [CrossRef]
- Durán-Guerrero, E.; Marín, R.N.; Mejías, R.C.; Barroso, C.G. Stir bar sorptive extraction of volatile compounds in vinegar: Validation study and comparison with solid phase microextraction. J. Chromatogr. A 2007, 1167, 18–26. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Grandi, M.; Manzini, D.; Marchetii, A. Three-way principal component analysis of the volatile fraction by HS-SPME/GC of aceto balsamico tradizionale of modena. Talanta 2008, 74, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R.; De Carvalho-Silva, S.; Trovatti Uetanabaro, A.; Villas-Boas, S. Vinegar Metabolomics: An Explorative Study of Commercial Balsamic Vinegars Using Gas Chromatography-Mass Spectrometry. Metabolites 2016, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Marrufo-Curtido, A.; Cejudo-Bastante, M.J.; Durán-Guerrero, E.; Castro-Mejías, R.; Natera, R.; Chinnici, F.; García-Barroso, C. Characterization and differentiation of high quality vinegars by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (SBSE–GC–MS). LWT Food Sci. Technol. 2012, 47, 332–341. [Google Scholar] [CrossRef]
- Durán-Guerrero, E.; Chinnici, F.; Natali, N.; Marín, R.N.; Riponi, C. Solid-phase extraction method for determination of volatile compounds in traditional balsamic vinegar. J. Sep. Sci. 2008, 31, 3030–3036. [Google Scholar] [CrossRef]
- Cirlini, M.; Caligiani, A.; Palla, L.; Palla, G. HS-SPME/GC–MS and chemometrics for the classification of Balsamic Vinegars of Modena of different maturation and ageing. Food Chem. 2011, 124, 1678–1683. [Google Scholar] [CrossRef]
- Del Signore, A. Chemometric analysis and volatile compounds of traditional balsamic vinegars from Modena. J. Food Eng. 2001, 50, 77–90. [Google Scholar] [CrossRef]
- Jeong, E.-J.; Jeon, S.-Y.; Baek, J.-H.; Cha, Y.-J. Volatile Flavor Compounds in Commercial Vinegar Beverages Derived from Fruits. J. Life Sci. 2011, 21, 292–299. [Google Scholar] [CrossRef]
- Pinu, F.; Villas-Boas, S.G. Rapid quantification of major volatile metabolites in fermented food and beverages using gas chromatography-mass spectrometry. Metabolites 2017, 7, 37. [Google Scholar] [CrossRef]
- Jang, Y.K.; Lee, M.Y.; Kim, H.Y.; Lee, S.; Yeo, S.H.; Baek, S.Y.; Lee, C.H. Comparison of traditional and commercial vinegars based on metabolite profiling and antioxidant activity. J. Microbiol. Biotechnol. 2015, 25, 217–226. [Google Scholar] [CrossRef]
- Pizarro, C.; Esteban-Díez, I.; Sáenz-González, C.; González-Sáiz, J.M. Vinegar classification based on feature extraction and selection from headspace solid-phase microextraction/gas chromatography volatile analyses: A feasibility study. Anal. Chim. Acta 2008, 608, 38–47. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Callejón, R.M.; Morales, M.L.; García-Parrilla, M.C. A survey of biogenic amines in vinegars. Food Chem. 2013, 141, 2713–2719. [Google Scholar] [CrossRef]
- Hillmann, H.; Mattes, J.; Brockhoff, A.; Dunkel, A.; Meyerhof, W.; Hofmann, T. Sensomics Analysis of Taste Compounds in Balsamic Vinegar and Discovery of 5-Acetoxymethyl-2-furaldehyde as a Novel Sweet Taste Modulator. J. Agric. Food Chem. 2012, 60, 9974–9990. [Google Scholar] [CrossRef] [PubMed]
- Papetti, A.; Mascherpa, D.; Marrubini, G.; Gazzani, G. Effect of In Vitro Digestion on Free α-Dicarbonyl Compounds in Balsamic Vinegars. J. Food Sci. 2013, 78, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M.; Amoroso, A.; Rossi, D.; Mascherpa, D.; Maga, G. Identification and quantification of α-dicarbonyl compounds in balsamic and traditional balsamic vinegars and their cytotoxicity against human cells. J. Food Compos. Anal. 2013, 31, 67–74. [Google Scholar] [CrossRef]
- Masino, F.; Chinnici, F.; Franchini, G.; Ulrici, A.; Antonelli, A. A study of the relationships among acidity, sugar and furanic compound concentrations in set of casks for Aceto Balsamico Tradizionale of Reggio Emilia by multivariate techniques. Food Chem. 2005, 92, 673–679. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Lambertini, P.; Manzini, S.; Marchetii, A.; Sighinolfi, S.; Totaro, S. Evolution of 5-(hydroxymethyl)furfural and furfural in the production chain of the aged vinegar Aceto Balsamico Tradizionale di Modena. Food Chem. 2011, 124, 822–832. [Google Scholar] [CrossRef]
- Gaspar, E.M.S.M.; Lucena, A.F.F. Improved HPLC methodology for food control—furfurals and patulin as markers of quality. Food Chem. 2009, 114, 1576–1582. [Google Scholar] [CrossRef]
- Theobald, A.; Müller, A.; Anklam, E. Determination of 5-Hydroxymethylfurfural in Vinegar Samples by HPLC. J. Agric. Food Chem. 1998, 46, 1850–1854. [Google Scholar] [CrossRef]
- Lin, S.-M.; Wu, J.-Y.; Su, C.; Ferng, S.; Lo, C.-Y.; Chiou, R.Y.-Y. Identification and Mode of Action of 5-Hydroxymethyl-2-furfural (5-HMF) and 1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic Acid (MTCA) as Potent Xanthine Oxidase Inhibitors in Vinegars. J. Agric. Food Chem. 2012, 60, 9856–9862. [Google Scholar] [CrossRef]
- Kim, T.R.; Kim, S.U.; Shin, Y.; Kim, J.Y.; Lee, S.M.; Kim, J.H. Determination of 4-Methylimidazole and 2-Acetyl-4(5)-tetrahydroxybutylimidazole in Caramel Color and Processed Foods by LC-MS/MS. Prev. Nutr. Food Sci. 2013, 18, 263–268. [Google Scholar] [CrossRef]
- Falcone, P.M.; Giudici, P. Molecular Size and Molecular Size Distribution Affecting Traditional Balsamic Vinegar Aging. J. Agric. Food Chem. 2008, 56, 7057–7066. [Google Scholar] [CrossRef]
- Falcone, P.M.; Boselli, E.; Frega, N.G. Structure-composition relationships of the Traditional Balsamic Vinegar close to jamming transition. Food Res. Int. 2011, 44, 1613–1619. [Google Scholar] [CrossRef]
- Markaki, P.; Delpont-Binet, C.; Grosso, F.; Dragacci, S. Determination of Ochratoxin A in Red Wine and Vinegar by Immunoaffinity High-Pressure Liquid Chromatography. J. Food Prot. 2001, 64, 533–537. [Google Scholar] [CrossRef]
- Zhao, Y.; He, Z.; Hao, W.; Zhu, H.; Liang, N.; Liu, J.; Zhang, C.; Ma, K.Y.; He, W.-S.; Yang, Y.; et al. Vinegars but not acetic acid are effective in reducing plasma cholesterol in hamsters fed a high-cholesterol diet. Food Funct. 2020, 11, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.L.; Gonzalez, A.G.; Troncoso, A.M. Ion-exclusion chromatographic determination of organic acids in vinegars. J. Chromatogr. A 1998, 822, 45–51. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants 2019, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Bakir, S.; Devecioglu, D.; Kayacan, S.; Toydemir, G.; Karbancioglu-Guler, F.; Capanoglu, E. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol. 2017, 243, 2083–2094. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Tesfaye, W.; Soria-Díaz, M.E.; Torija, M.J.; Mateo, E.; Garcia-Parrilla, M.C.; Troncoso, A.M. Effect of wood on the phenolic profile and sensory properties of wine vinegars during ageing. J. Food Compos. Anal. 2010, 23, 175–184. [Google Scholar] [CrossRef]
- Barnaba, C.; Dellacassa, E.; Nicolini, G.; Nardin, T.; Malacarne, M.; Larcher, R. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction—Ultrahigh-performance liquid chromatography—Quadrupole-orbitrap mass spectrometry. J. Chromatogr. A 2015, 1423, 124–135. [Google Scholar] [CrossRef]
- Antonelli, A.; Chinnici, F.; Masino, F. Heat-induced chemical modification of grape must as related to its concentration during the production of traditional balsamic vinegar: A preliminary approach. Food Chem. 2004, 88, 63–68. [Google Scholar] [CrossRef]
- Cocchi, M.; Ferrari, G.; Manzini, D.; Marchetti, A.; Sighinolfi, S. Study of the monosaccharides and furfurals evolution during the preparation of cooked grape musts for Aceto Balsamico Tradizionale production. J. Food Eng. 2007, 79, 1438–1444. [Google Scholar] [CrossRef]
- Diem, S.; Herderich, M. Reaction of tryptophan with carbohydrates: Identification and quantitative determination of novel β-carboline alkaloids in food. J. Agric. Food Chem. 2001, 49, 2486–2492. [Google Scholar] [CrossRef]
- James, A.T.; Martin, A.J.P. Gas-liquid partition chromatography: The separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J. 1952, 50, 679. [Google Scholar] [CrossRef] [PubMed]
- Parys, W.; Dolowy, M.; Pyka-Pajak, A. Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques. Processes 2021, 9, 1100. [Google Scholar] [CrossRef]
- Kašpar, M. Analysis of Volatile Compounds in Balsamic Vinegars. Ph.D. Thesis, University Pardubice, Pardubice, Czech Republic, 2020. [Google Scholar]
- Touchstone, J.C. History of chromatography. J. Liq. Chromatogr. 1993, 16, 1647–1665. [Google Scholar] [CrossRef]
- Dong, M.W. Modern HPLC for Practicing Scientists; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Cacciola, F.; Rigano, F.; Dugo, P.; Mondello, L. Comprehensive two-dimensional liquid chromatography as a powerful tool for the analysis of food and food products. Trends Anal. Chem. 2020, 127, 115894. [Google Scholar] [CrossRef]
- Arigo, A.; Česla, P.; Šilarová, P.; Calabro, M.L.; Česlová, L. Development of extraction method for characterization of free and bonded polyphenols in barley (Hordeum vulgare L.) growth in Czech Republic using liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 245, 829–837. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R.; Benevelli, F.; Spraul, M.; Humpfer, E.; Stocchero, M. NMR and Chemometric methods: A powerful combination for characterization of Balsamic and Traditional Balsamic Vinegar of Modena. Anal. Chim. Acta 2008, 61, 31–40. [Google Scholar] [CrossRef]
- Bertelli, D.; Maietti, A.; Papotti, G.; Tedeschi, P.; Bonetti, G.; Graziosi, R.; Brandolini, V.; Plessi, M. Antioxidant Activity, Phenolic Compounds, and NMR Characterization of Balsamic and Traditional Balsamic Vinegar of Modena. Food Anal. Methods 2015, 8, 371–379. [Google Scholar] [CrossRef]
- Camin, F.; Simoni, M.; Hermann, A.; Thomas, F.; Perini, M. Validation of the 2H-SNIF NMR and IRMS Methods for Vinegar and Vinegar Analysis: An International Collaborative Study. Molecules 2020, 25, 2932. [Google Scholar] [CrossRef]
- Caligiani, A.; Acquotti, D.; Palla, G.; Bocchi, V. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy. Anal. Chim. Acta 2007, 585, 110–119. [Google Scholar] [CrossRef]
- Consonni, R.; Gatti, A. 1 H NMR Studies on Italian Balsamic and Traditional Balsamic Vinegars. J. Agric. Food Chem. 2004, 52, 3446–3450. [Google Scholar] [CrossRef] [PubMed]
- Consonni, R.; Cagliani, L.R. NMR relaxation data for quality characterization of Balsamic vinegar of Modena. Talanta 2007, 73, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Graziosi, R.; Bertelli, D.; Marchetti, L.; Papotti, G.; Rossi, M.C.; Plessi, M. Novel 2D-NMR Approach for the Classification of Balsamic Vinegars of Modena. J. Agric. Food Chem. 2017, 65, 5421–5426. [Google Scholar] [CrossRef]
- Papotti, G.; Bertelli, D.; Graziosi, R.; Maietti, A.; Tedeschi, P.; Marchetti, A.; Plessi, M. Traditional balsamic vinegar and balsamic vinegar of Modena analyzed by nuclear magnetic resonance spectroscopy coupled with multivariate data analysis. LWT Food Sci. Technol. 2015, 60, 1017–1024. [Google Scholar] [CrossRef]
- De Vero, L.; Gala, E.; Gullo, M.; Solieri, L.; Landi, S.; Giudici, P. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol. 2006, 23, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; De Vero, L.; Giudici, P. Succession of Selected Strains of Acetobacter pasteurianus and Other Acetic Acid Bacteria in Traditional Balsamic Vinegar. Appl. Environ. Microbiol. 2009, 75, 2585–2589. [Google Scholar] [CrossRef]
- Cetó, X.; Pérez, S. Voltammetric electronic tongue for vinegar fingerprinting. Talanta 2020, 219, 121253. [Google Scholar] [CrossRef]
- Kotani, A.; Miyaguchi, Y.; Harada, D.; Kusu, F. A Disposable Voltammetric Cell for Determining the Titratable Acidity in Vinegar. Anal. Sci. 2003, 19, 1473–1476. [Google Scholar] [CrossRef]
- Lo Coco, F.; Novelli, V.; Ceccon, L.; Monotti, P.; Ciraolo, L. Determination of Zinc (II), Cadmium (II), Lead (II) and Copper (II) in Common and Balsamic Vinegar by Stripping Chronopotentiometry, Proceedings of the Euroconference on University and Enterprise, “A Partnership for Training, Research, Employment and Social Development”, Rome, Italy, 26–28 September 2002; Facoltà di Economia, Università la Sapienza: Rome, Italy, 2002; pp. 643–653. [Google Scholar]
- Urbinati, E.; Di Nunzio, M.; Picone, G.; Chiarello, E.; Bordoni, A.; Capozzi, F. The effect of balsamic vinegar dressing on protein and carbohydrate digestibility is dependent on the food matrix. Foods 2021, 10, 411. [Google Scholar] [CrossRef]
- González-Marco, A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Concentration of volatile compounds in Chardonnay wine fermented in stainless steel tanks and oak barrels. Food Chem. 2008, 108, 213–219. [Google Scholar] [CrossRef]
- Kurtbay, H.; Kaynak, I.; Bozkurt, S.; Merdivan, M. Densitometric HPTLC analysis of the 5-hydroxymethylfurfural content of Turkish fruit wines and vinegars. J. Planar Chromatogr. Mod. TLC 2009, 22, 363–366. [Google Scholar] [CrossRef]
- Masino, F.; Antonelli, A.; Chinnici, F. Furanic compound profiles in set of casks for the Traditional Balsamic Vinegar of Reggio Emilia production. Ind. Bevande 2004, 33, 19–23. [Google Scholar]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.; Rahman, H.S. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Ezhilarasan, D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab. J. Gastroenterol. 2018, 19, 56–64. [Google Scholar] [CrossRef]
- Kašpar, M.; Bajer, T.; Bajerová, P.; Česla, P. Comparison of Phenolic Profile of Balsamic Vinegars Determined Using Liquid and Gas Chromatography Coupled with Mass Spectrometry. Molecules 2022, 27, 1356. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdie, D.; Boidron, J.N.; Pons, M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992, 60, 165–178. [Google Scholar] [CrossRef]
- Proestos, C.; Sereli, D.; Komaitis, M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem. 2006, 95, 44–52. [Google Scholar] [CrossRef]
- Morales, M.; Wendu Tesfaye, L.; García-Parrilla, M.C.; Casas, J.A.; Troncoso, A.M. Evolution of the Aroma Profile of Sherry Wine Vinegars during an Experimental Aging in Wood. J. Agric. Food Chem. 2002, 50, 3173–3178. [Google Scholar] [CrossRef]
- More, S.S.; Raza, A.; Vince, R. The Butter Flavorant, Diacetyl, Forms a Covalent Adduct with 2-Deoxyguanosine, Uncoils DNA, and Leads to Cell Death. J. Agric. Food Chem. 2012, 60, 3311–3317. [Google Scholar] [CrossRef]
- More, S.S.; Vartak, A.P.; Vince, R. The Butter Flavorant, Diacetyl, Exacerbates β-Amyloid Cytotoxicity. Chem. Res. Toxicol. 2012, 25, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Cirlini, M. Development of New Analytical Methods for the Characterization, Authentication and Quality Evaluation of Balsamic Vinegar of Modena. Ph.D. Thesis, Università degli Studi di Parma, Parma, Italy, 2009. [Google Scholar]
- Del Signore, A. Technological parameters affecting aging and refining of balsamic vinegar from Modena in wood receptacles related to the new ec regulation n. 583/2009. Ital. J. Food Sci. 2011, 23, 228. [Google Scholar]
Analyt/Target | Method | Column | Extraction Procedure | Reference |
---|---|---|---|---|
2,3-Butanediol, 2-Hydroxybutanone | GC-MS | CP Chirasil-Dex | LLE by ethyl acetate | [17] |
4-Methylimidazole | GC-MS | DB-5 | LLE by BEHPA in chloroform | [18] |
Furan | GC-MS | SUPELCOWAX 10 | HS-SPME (DVB/CAR/PDMS) | [19] |
Furanic compounds | GC-MS | DB-Wax | HS-SPME (DVB/CAR/PDMS) | [20] |
Furanic compounds | GC-MS | Varian CPSil 8CB | DHS-TDU (Tenax TA, Tenax GR) | [21] |
Furanic compounds | GC-MS; FID | ZB-WAX | HS-SPME (DVB/CAR/PDMS) | [22] |
Glucose a fructose acetates | GC-MS | DB-5 | SPE (silica), methylenchlorid/MeOH elu. | [23] |
Glycerol | GC-C-IRMS | Alltech Heliflex AT-WAX | [24] | |
Chiral amino acids | GC-MS | Chirasil-L-Val | Dowex 50 W X8 cation exchanger, NH3 elu. | [25] |
Odour compounds | GC-O | DB-Wax | SPE (LiChrolut-EN), dichlormethane elu. | [26] |
Odour compounds | GC-MS; O-AEDA | Unknown | LLE by dichlormethane | [27] |
Organic acids | GC-MS; FID | Heliflex AT-1, DB5-MS | SPE (C18, NH2), NH4OH elu. | [28] |
Organic acids, sugars | GC-MS; FID | Alltech AT-5 | SPE (C18), water elu. | [29] |
Pesticides | GC-MS | HP-5 | SBSE (PDMS) | [30] |
Phenolic acids | GC-MS | RTX-5MS | SPE (Chem-Elut), n-butanol elu. | [31] |
Phenolic acids | GC-MS | RTX-5MS | SPE (DPA), ethyl acetate elu. | [31] |
Phenolic compounds | GC-MS | Unknown | SPE (C8 Isolute), ethyl acetate elu. | [32] |
Preservatives compounds | GC-MS | HP-INNOWax | SBSE (PDMS) | [33] |
Volatile aldehydes | GC-MS | Stabilwax | SPE (LiChrolut-EN), dichlormethane elu. | [34] |
Volatile compounds | GC-MS; FID | DB-Wax | SPME (CAR/PDMS) | [11] |
Volatile compounds | GC-MS; FID | CPWax-57CB | HSSE-TD (PDMS) | [35] |
Volatile compounds | GC-MS; FID | DB-Wax | SBSE (PDMS) | [36] |
Volatile compounds | GC-MS; FID | CPSil 5MS | SPME (PDMS) | [37] |
Volatile compounds | GC-MS | Zebron ZB-1701 | LLE by diethyl ether | [38] |
Volatile compounds | GC-MS | Stabilwax | SPE (LiChrolut-EN), dichlormethane elu. | [10] |
Volatile compounds | GC-MS | DB-Wax | SBSE (PDMS) | [39] |
Volatile compounds | GC-MS | Stabilwax | SPE (LiChrolut-EN), dichlormethane elu. | [40] |
Volatile compounds | GC-MS | SUPELCOWAX 10 | HS-SPME (DVB/CAR/PDMS) | [41] |
Volatile compounds | GC-MS | HP Innowax | DHS-SPE (Charcoal, Tenax), diethyl ether elu. | [42] |
Volatile compounds | GC-MS | DB-Wax | SPME (PDMS, DVB) | [43] |
Volatile compounds | GC-MS | Zebron ZB-1701 | LLE by ethyl acetate | [44] |
Volatile compounds | GC-TOF-MS | RTX-5MS | [45] | |
Volatile compounds | GC-MS | CP-Wax 52 CB | HS-SPME (CAR-PDMS) | [46] |
Analyt/Target | Method | Column | Extraction Procedure | Reference |
---|---|---|---|---|
Amines | HPLC-FLD | Luna C18 | SPE (Oasis MCX 1), NaOH/MeOH elu. | [47] |
Amino acids | HPLC-DAD | Zorbax Eclipse AAA | [15] | |
Amino acids | HILIC-MS/MS | TSKgel Amide-80 | [48] | |
Amino acids and amines | HPLC-DAD | Nova-Pak® C18 | [14] | |
Ascrobic acid | HPLC-MWD | Zorbax Eclipse plus C18 | [15] | |
Dicarbonyl compounds | HPLC-DAD | Gemini C18 | SPE (tC-18 Sep-Pak), MeOH/water elu. | [49] |
Dicarbonyl compounds | HPLC-DAD; MS/MS | Zorbax Eclipse XDB-C18 | SPE (tC-18 Sep-Pak), water elu. | [50] |
Furanic compounds | IEC-DAD | Bio-Rad Aminex HPX 87H | [16] | |
Furanic compounds | HPLC-DAD | Bio-Rad Aminex HPX 87H | [13] | |
Furanic compounds | IEC-DAD | Bio-Rad Aminex HPX 87H | [51] | |
Furanic compounds | HPLC-DAD | SUGAR SH 1011 | [52] | |
Furanic compounds and patulin | HPLC-DAD | XBridge C18 | [53] | |
HMF | HPLC-DAD | Hypersil ODS C18 | [54] | |
HMF, MTCA | HPLC-MS/MS | Thermo Biobasic-C18 | SPE (ODS C18), MeOH/water elu. | [55] |
Imidazoles | HPLC-MS/MS | Luna C18 | [56] | |
Molecular weight and distribution | SEC-RI; UV/Vis | TSK-gel GMPW(XL) and G3000PW(XL) | [57] | |
Molecular weight and distribution | SEC-RI | TSK-gel GMPW(XL) and G3000PW(XL) | [58] | |
Ochratoxin A | HPLC-FLD | C-18 Lichrosphere 100 | LLE by chloroform | [59] |
Organic acids | HPLC-UV/Vis | Hypersil ODS C18 | [60] | |
Organic acids | IEC-DAD; UV/Vis | Aminex HPX87-H | [61] | |
Organic acids | HPLC-DAD | Prevail organic acid column | [15] | |
Organic acids, phenolic compounds | HPLC-DAD | Agilent TC-C18, Zorbax Extend-C18 | [62] | |
Organic acids, sugars | HPLC-RI; UV/Vis | Bio-Rad Aminex HPX 87H | [13] | |
Phenolic compounds | HPLC-DAD | Luna C18 | [63] | |
Phenolic compounds | HPLC-DAD | LiChroCART 250-4 Superspher 100 RP-18 | [64] | |
Phenolic compounds | HPLC-MS/MS | Waters C18 | Online SPE (HyperSep™ Retain PEP) | [65] |
Phenolic compounds | HPLC-MS/MS | Synergy Fusion RP18 column | SPE (Strata C18-E), MetOH elu. | [48] |
Phenolic compounds, HMF | HPLC-DAD | Zorbax Eclipse plus C18 | [15] | |
Sugars | HPLC-RI | Carbohydrate HP column | [15] | |
Sugars and derivates | HPLC-RI | Agilent HI-plex H | [12] | |
Sugars and furfurals | HPLC-RI; DAD | Bio-Rad Aminex HPX 87H | [66] | |
Sugars and furfurals | HPLC-RI; DAD | Bio-Rad Aminex HPX 87H | SPE (C18), MeOH/water elu. | [67] |
Taxifolin | HPLC-MS/MS | Zorbax SB-C18 | [64] | |
β-carboline alkaloids | HPLC-DAD; MS/MS | Eurospher 100 C18, Symmetry C18 | LLE by ethyl acetate | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kašpar, M.; Česla, P. Characterization of Balsamic Vinegars Using High-Performance Liquid Chromatography and Gas Chromatography. Appl. Sci. 2022, 12, 8946. https://doi.org/10.3390/app12188946
Kašpar M, Česla P. Characterization of Balsamic Vinegars Using High-Performance Liquid Chromatography and Gas Chromatography. Applied Sciences. 2022; 12(18):8946. https://doi.org/10.3390/app12188946
Chicago/Turabian StyleKašpar, Michal, and Petr Česla. 2022. "Characterization of Balsamic Vinegars Using High-Performance Liquid Chromatography and Gas Chromatography" Applied Sciences 12, no. 18: 8946. https://doi.org/10.3390/app12188946
APA StyleKašpar, M., & Česla, P. (2022). Characterization of Balsamic Vinegars Using High-Performance Liquid Chromatography and Gas Chromatography. Applied Sciences, 12(18), 8946. https://doi.org/10.3390/app12188946